22,539 research outputs found

    MetaSpace II: Object and full-body tracking for interaction and navigation in social VR

    Full text link
    MetaSpace II (MS2) is a social Virtual Reality (VR) system where multiple users can not only see and hear but also interact with each other, grasp and manipulate objects, walk around in space, and get tactile feedback. MS2 allows walking in physical space by tracking each user's skeleton in real-time and allows users to feel by employing passive haptics i.e., when users touch or manipulate an object in the virtual world, they simultaneously also touch or manipulate a corresponding object in the physical world. To enable these elements in VR, MS2 creates a correspondence in spatial layout and object placement by building the virtual world on top of a 3D scan of the real world. Through the association between the real and virtual world, users are able to walk freely while wearing a head-mounted device, avoid obstacles like walls and furniture, and interact with people and objects. Most current virtual reality (VR) environments are designed for a single user experience where interactions with virtual objects are mediated by hand-held input devices or hand gestures. Additionally, users are only shown a representation of their hands in VR floating in front of the camera as seen from a first person perspective. We believe, representing each user as a full-body avatar that is controlled by natural movements of the person in the real world (see Figure 1d), can greatly enhance believability and a user's sense immersion in VR.Comment: 10 pages, 9 figures. Video: http://living.media.mit.edu/projects/metaspace-ii

    Desktop vs. Headset: A Comparative Study of User Experience and Engagement for Flexibility Exercise in Virtual Reality

    Get PDF
    This study aimed to investigate the effectiveness of Virtual Reality (VR) technology for flexibility exercise and compare the physical outcomes, user experience, and engagement of VR desktops and VR headsets. The VR exercise application was designed using motion capture technology and exported to different VR devices. Each of the devices was used by 30 participants to perform a flexibility exercise in VR. Physical outcomes were measured using the sit-and-reach test, and user experience and engagement were evaluated using questionnaires and group discussions. The results showed that VR desktop participants had higher sit-and-reach scores. However, VR headset participants reported a more immersive experience (reality judgment) and motivation (value and usefulness). They also had higher engagement (focused attention and reward) levels than VR desktop participants. There were no significant differences between the two approaches in terms of enjoyment, effort, pressure, choice, correspondence, absorption, perceived usability, and aesthetic appeal. The study highlights the importance of considering physical outcomes, user experience, and engagement by comparing two different VR approaches for flexibility exercise. Further research is needed to explore the limitations and potential benefits of VR technology for physical activity. Doi: 10.28991/ESJ-2023-07-04-03 Full Text: PD

    IC.IDO as a tool for displaying machining processes. The logic interface between Computer-Aided-Manufacturing and Virtual Reality

    Get PDF
    Abstract This scientific communication investigates the logic interface of a CAM solver, i.e., MasterCAM, into a Virtual Reality (VR) environment. This integration helps in displaying machining operations in virtual reality. Currently, to partially visualize the results of a simulation in an immersive environment, an import/export procedure must be done manually. Here, a software plugin integrated into IC.IDO (by ESI Group) has been realized and fully described. This application allows the complete integration of CAM solver into the VR environment. In particular, the VERICUT solver has been integrated into VR. This kind of integration has never been done yet

    IC.IDO as a tool for displaying machining processes. The logic interface between computer-aided-manufacturing and virtual reality

    Get PDF
    This scientific communication investigates the logic interface of a CAM solver, i.e., MasterCAM, into a Virtual Reality (VR) environment. This integration helps in displaying machining operations in virtual reality. Currently, to partially visualize the results of a simulation in an immersive environment, an import/export procedure must be done manually. Here, a software plugin integrated into IC.IDO (by ESI Group) has been realized and fully described. This application allows the complete integration of CAM solver into the VR environment. In particular, the VERICUT solver has been integrated into VR. This kind of integration has never been done yet

    Narrative Transportation and Virtual Reality: Exploring the Immersive Qualities of Social Justice in the Digital World

    Get PDF
    This dissertation explores the potential applications for virtual reality (VR) stories in support of social justice causes, examining whether digital games historically been successfully leveraged for social justice purposes, and determining which components of VR technology can most encourage narrative transportation of participants in VR stories. The first chapter examines theories of simulation, virtual reality, narrative, and interactivity, as well as concepts of immersion from various disciplines and settles on narrative transportation, a theory from cognitive psychology, as the most useful in measuring the effect of VR stories on participants. The second chapter examines ethnographic practices, activist games, and modes of reclaiming digital spaces as a way to encourage digital social justice and ensure traditionally marginalized communities have meaningful access to technology—or, the tools to use it, create with it, and critique it. The third chapter presents the result of a play study conducted to measure participants\u27 transportation in a recent VR narrative and finds VR interactive narratives to be more transportive and engaging than their two-dimensional counterparts. The fourth chapter interrogates some of the fears of VR technology, namely that it will be used to further current societal injustices and as a potentially powerful propaganda tool. The final chapter presents five recommendations for designers seeking to experiment in virtual reality narratives. The ultimate aim of this work is to encourage scholars, designers, and participants to make ethical decisions in the creation and use of virtual societies
    • …
    corecore