74 research outputs found

    Image Compression by Wavelet Transform.

    Get PDF
    Digital images are widely used in computer applications. Uncompressed digital images require considerable storage capacity and transmission bandwidth. Efficient image compression solutions are becoming more critical with the recent growth of data intensive, multimedia-based web applications. This thesis studies image compression with wavelet transforms. As a necessary background, the basic concepts of graphical image storage and currently used compression algorithms are discussed. The mathematical properties of several types of wavelets, including Haar, Daubechies, and biorthogonal spline wavelets are covered and the Enbedded Zerotree Wavelet (EZW) coding algorithm is introduced. The last part of the thesis analyzes the compression results to compare the wavelet types

    Image compression techniques using vector quantization

    Get PDF

    Development of Some Efficient Lossless and Lossy Hybrid Image Compression Schemes

    Get PDF
    Digital imaging generates a large amount of data which needs to be compressed, without loss of relevant information, to economize storage space and allow speedy data transfer. Though both storage and transmission medium capacities have been continuously increasing over the last two decades, they dont match the present requirement. Many lossless and lossy image compression schemes exist for compression of images in space domain and transform domain. Employing more than one traditional image compression algorithms results in hybrid image compression techniques. Based on the existing schemes, novel hybrid image compression schemes are developed in this doctoral research work, to compress the images effectually maintaining the quality

    Self-similarity and wavelet forms for the compression of still image and video data

    Get PDF
    This thesis is concerned with the methods used to reduce the data volume required to represent still images and video sequences. The number of disparate still image and video coding methods increases almost daily. Recently, two new strategies have emerged and have stimulated widespread research. These are the fractal method and the wavelet transform. In this thesis, it will be argued that the two methods share a common principle: that of self-similarity. The two will be related concretely via an image coding algorithm which combines the two, normally disparate, strategies. The wavelet transform is an orientation selective transform. It will be shown that the selectivity of the conventional transform is not sufficient to allow exploitation of self-similarity while keeping computational cost low. To address this, a new wavelet transform is presented which allows for greater orientation selectivity, while maintaining the orthogonality and data volume of the conventional wavelet transform. Many designs for vector quantizers have been published recently and another is added to the gamut by this work. The tree structured vector quantizer presented here is on-line and self structuring, requiring no distinct training phase. Combining these into a still image data compression system produces results which are among the best that have been published to date. An extension of the two dimensional wavelet transform to encompass the time dimension is straightforward and this work attempts to extrapolate some of its properties into three dimensions. The vector quantizer is then applied to three dimensional image data to produce a video coding system which, while not optimal, produces very encouraging results

    Digital image compression

    Get PDF

    Investigation of Different Video Compression Schemes Using Neural Networks

    Get PDF
    Image/Video compression has great significance in the communication of motion pictures and still images. The need for compression has resulted in the development of various techniques including transform coding, vector quantization and neural networks. this thesis neural network based methods are investigated to achieve good compression ratios while maintaining the image quality. Parts of this investigation include motion detection, and weight retraining. An adaptive technique is employed to improve the video frame quality for a given compression ratio by frequently updating the weights obtained from training. More specifically, weight retraining is performed only when the error exceeds a given threshold value. Image quality is measured objectively, using the peak signal-to-noise ratio versus performance measure. Results show the improved performance of the proposed architecture compared to existing approaches. The proposed method is implemented in MATLAB and the results obtained such as compression ratio versus signalto- noise ratio are presented

    Visual Data Compression for Multimedia Applications

    Get PDF
    The compression of visual information in the framework of multimedia applications is discussed. To this end, major approaches to compress still as well as moving pictures are reviewed. The most important objective in any compression algorithm is that of compression efficiency. High-compression coding of still pictures can be split into three categories: waveform, second-generation, and fractal coding techniques. Each coding approach introduces a different artifact at the target bit rates. The primary objective of most ongoing research in this field is to mask these artifacts as much as possible to the human visual system. Video-compression techniques have to deal with data enriched by one more component, namely, the temporal coordinate. Either compression techniques developed for still images can be generalized for three-dimensional signals (space and time) or a hybrid approach can be defined based on motion compensation. The video compression techniques can then be classified into the following four classes: waveform, object-based, model-based, and fractal coding techniques. This paper provides the reader with a tutorial on major visual data-compression techniques and a list of references for further information as the details of each metho

    Concealment algorithms for networked video transmission systems

    Get PDF
    This thesis addresses the problem of cell loss when transmitting video data over an ATM network. Cell loss causes sections of an image to be lost or discarded in the interconnecting nodes between the transmitting and receiving locations. The method used to combat this problem is to use a technique called Error Concealment, where the lost sections of an image are replaced with approximations derived from the information in the surrounding areas to the error. This technique does not require any additional encoding, as used by Error Correction. Conventional techniques conceal from within the pixel domain, but require a large amount of processing (2N2 up to 20N2) where N is the dimension of an N×N square block. Also, previous work at Loughborough used Linear Interpolation in the transform domain, which required much less processing, to conceal the error. [Continues.
    corecore