19 research outputs found

    EPG-representations with small grid-size

    Full text link
    In an EPG-representation of a graph GG each vertex is represented by a path in the rectangular grid, and (v,w)(v,w) is an edge in GG if and only if the paths representing vv an ww share a grid-edge. Requiring paths representing edges to be x-monotone or, even stronger, both x- and y-monotone gives rise to three natural variants of EPG-representations, one where edges have no monotonicity requirements and two with the aforementioned monotonicity requirements. The focus of this paper is understanding how small a grid can be achieved for such EPG-representations with respect to various graph parameters. We show that there are mm-edge graphs that require a grid of area Ω(m)\Omega(m) in any variant of EPG-representations. Similarly there are pathwidth-kk graphs that require height Ω(k)\Omega(k) and area Ω(kn)\Omega(kn) in any variant of EPG-representations. We prove a matching upper bound of O(kn)O(kn) area for all pathwidth-kk graphs in the strongest model, the one where edges are required to be both x- and y-monotone. Thus in this strongest model, the result implies, for example, O(n)O(n), O(nlogn)O(n \log n) and O(n3/2)O(n^{3/2}) area bounds for bounded pathwidth graphs, bounded treewidth graphs and all classes of graphs that exclude a fixed minor, respectively. For the model with no restrictions on the monotonicity of the edges, stronger results can be achieved for some graph classes, for example an O(n)O(n) area bound for bounded treewidth graphs and O(nlog2n)O(n \log^2 n) bound for graphs of bounded genus.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Planar graphs as L-intersection or L-contact graphs

    Full text link
    The L-intersection graphs are the graphs that have a representation as intersection graphs of axis parallel shapes in the plane. A subfamily of these graphs are {L, |, --}-contact graphs which are the contact graphs of axis parallel L, |, and -- shapes in the plane. We prove here two results that were conjectured by Chaplick and Ueckerdt in 2013. We show that planar graphs are L-intersection graphs, and that triangle-free planar graphs are {L, |, --}-contact graphs. These results are obtained by a new and simple decomposition technique for 4-connected triangulations. Our results also provide a much simpler proof of the known fact that planar graphs are segment intersection graphs

    Proper circular arc graphs as intersection graphs of paths on a grid

    Full text link
    In this paper we present a characterisation, by an infinite family of minimal forbidden induced subgraphs, of proper circular arc graphs which are intersection graphs of paths on a grid, where each path has at most one bend (turn)

    Relationship of kk-Bend and Monotonic \ell-Bend Edge Intersection Graphs of Paths on a Grid

    Full text link
    If a graph GG can be represented by means of paths on a grid, such that each vertex of GG corresponds to one path on the grid and two vertices of GG are adjacent if and only if the corresponding paths share a grid edge, then this graph is called EPG and the representation is called EPG representation. A kk-bend EPG representation is an EPG representation in which each path has at most kk bends. The class of all graphs that have a kk-bend EPG representation is denoted by BkB_k. BmB_\ell^m is the class of all graphs that have a monotonic (each path is ascending in both columns and rows) \ell-bend EPG representation. It is known that BkmBkB_k^m \subsetneqq B_k holds for k=1k=1. We prove that BkmBkB_k^m \subsetneqq B_k holds also for k{2,3,5}k \in \{2, 3, 5\} and for k7k \geqslant 7 by investigating the BkB_k-membership and BkmB_k^m-membership of complete bipartite graphs. In particular we derive necessary conditions for this membership that have to be fulfilled by mm, nn and kk, where mm and nn are the number of vertices on the two partition classes of the bipartite graph. We conjecture that BkmBkB_{k}^{m} \subsetneqq B_{k} holds also for k{4,6}k\in \{4,6\}. Furthermore we show that Bk⊈B2k9mB_k \not\subseteq B_{2k-9}^m holds for all k5k\geqslant 5. This implies that restricting the shape of the paths can lead to a significant increase of the number of bends needed in an EPG representation. So far no bounds on the amount of that increase were known. We prove that B1B3mB_1 \subseteq B_3^m holds, providing the first result of this kind

    Restricted String Representations

    Get PDF
    A string representation of a graph assigns to every vertex a curve in the plane so that two curves intersect if and only if the represented vertices are adjacent. This work investigates string representations of graphs with an emphasis on the shapes of curves and the way they intersect. We strengthen some previously known results and show that every planar graph has string representations where every curve consists of axis-parallel line segments with at most two bends (those are the so-called B2B_2-VPG representations) and simultaneously two curves intersect each other at most once (those are the so-called 1-string representations). Thus, planar graphs are B2B_2-VPG 11-string graphs. We further show that with some restrictions on the shapes of the curves, string representations can be used to produce approximation algorithms for several hard problems. The B2B_2-VPG representations of planar graphs satisfy these restrictions. We attempt to further restrict the number of bends in VPG representations for subclasses of planar graphs, and investigate B1B_1-VPG representations. We propose new classes of string representations for planar graphs that we call ``order-preserving.'' Order-preservation is an interesting property which relates the string representation to the planar embedding of the graph, and we believe that it might prove useful when constructing string representations. Finally, we extend our investigation of string representations to string representations that require some curves to intersect multiple times. We show that there are outer-string graphs that require an exponential number of crossings in their outer-string representations. Our construction also proves that 1-planar graphs, i.e., graphs that are no longer planar, yet fairly close to planar graphs, may have string representations, but they are not always 1-string

    Computing maximum cliques in B2B_2-EPG graphs

    Full text link
    EPG graphs, introduced by Golumbic et al. in 2009, are edge-intersection graphs of paths on an orthogonal grid. The class BkB_k-EPG is the subclass of EPG graphs where the path on the grid associated to each vertex has at most kk bends. Epstein et al. showed in 2013 that computing a maximum clique in B1B_1-EPG graphs is polynomial. As remarked in [Heldt et al., 2014], when the number of bends is at least 44, the class contains 22-interval graphs for which computing a maximum clique is an NP-hard problem. The complexity status of the Maximum Clique problem remains open for B2B_2 and B3B_3-EPG graphs. In this paper, we show that we can compute a maximum clique in polynomial time in B2B_2-EPG graphs given a representation of the graph. Moreover, we show that a simple counting argument provides a 2(k+1){2(k+1)}-approximation for the coloring problem on BkB_k-EPG graphs without knowing the representation of the graph. It generalizes a result of [Epstein et al, 2013] on B1B_1-EPG graphs (where the representation was needed)

    Monotonic Representations of Outerplanar Graphs as Edge Intersection Graphs of Paths on a Grid

    Full text link
    A graph GG is called an edge intersection graph of paths on a grid if there is a grid and there is a set of paths on this grid, such that the vertices of GG correspond to the paths and two vertices of GG are adjacent if and only if the corresponding paths share a grid edge. Such a representation is called an EPG representation of GG. BkB_{k} is the class of graphs for which there exists an EPG representation where every path has at most kk bends. The bend number b(G)b(G) of a graph GG is the smallest natural number kk for which GG belongs to BkB_k. BkmB_{k}^{m} is the subclass of BkB_k containing all graphs for which there exists an EPG representation where every path has at most kk bends and is monotonic, i.e. it is ascending in both columns and rows. The monotonic bend number bm(G)b^m(G) of a graph GG is the smallest natural number kk for which GG belongs to BkmB_k^m. Edge intersection graphs of paths on a grid were introduced by Golumbic, Lipshteyn and Stern in 2009 and a lot of research has been done on them since then. In this paper we deal with the monotonic bend number of outerplanar graphs. We show that bm(G)2b^m(G)\leqslant 2 holds for every outerplanar graph GG. Moreover, we characterize in terms of forbidden subgraphs the maximal outerplanar graphs and the cacti with (monotonic) bend number equal to 00, 11 and 22. As a consequence we show that for any maximal outerplanar graph and any cactus a (monotonic) EPG representation with the smallest possible number of bends can be constructed in a time which is polynomial in the number of vertices of the graph

    Characterising circular-arc contact B0B_0-VPG graphs

    Full text link
    A contact B0B_0-VPG graph is a graph for which there exists a collection of nontrivial pairwise interiorly disjoint horizontal and vertical segments in one-to-one correspondence with its vertex set such that two vertices are adjacent if and only if the corresponding segments touch. It was shown by Deniz et al. that Recognition is NP\mathsf{NP}-complete for contact B0B_0-VPG graphs. In this paper we present a minimal forbidden induced subgraph characterisation of contact B0B_0-VPG graphs within the class of circular-arc graphs and provide a polynomial-time algorithm for recognising these graphs

    Proper circular arc graphs as intersection graphs of pathson a grid

    Get PDF
    In this paper we present a characterization, by an infinite family of minimal forbidden induced subgraphs, of proper circular arc graphs which are intersection graphs of paths on a grid, where each path has at most one bend (turn).Facultad de Ciencias Exacta
    corecore