153 research outputs found

    Optimal Orchestration of Virtual Network Functions

    Full text link
    -The emergence of Network Functions Virtualization (NFV) is bringing a set of novel algorithmic challenges in the operation of communication networks. NFV introduces volatility in the management of network functions, which can be dynamically orchestrated, i.e., placed, resized, etc. Virtual Network Functions (VNFs) can belong to VNF chains, where nodes in a chain can serve multiple demands coming from the network edges. In this paper, we formally define the VNF placement and routing (VNF-PR) problem, proposing a versatile linear programming formulation that is able to accommodate specific features and constraints of NFV infrastructures, and that is substantially different from existing virtual network embedding formulations in the state of the art. We also design a math-heuristic able to scale with multiple objectives and large instances. By extensive simulations, we draw conclusions on the trade-off achievable between classical traffic engineering (TE) and NFV infrastructure efficiency goals, evaluating both Internet access and Virtual Private Network (VPN) demands. We do also quantitatively compare the performance of our VNF-PR heuristic with the classical Virtual Network Embedding (VNE) approach proposed for NFV orchestration, showing the computational differences, and how our approach can provide a more stable and closer-to-optimum solution

    Genetic algorithm for holistic VNF-mapping and virtual topology design

    Get PDF
    Producción CientíficaNext generation of Internet of Things (IoT) services imposes stringent requirements to the future networks that current ones cannot fulfill. 5G is a technology born to give response to those requirements. However, the deployment of 5G is also accompanied by profound architectural changes in the network, including the introduction of technologies like multi-access edge computing (MEC), software defined networking (SDN), and network function virtualization (NFV). In particular, NFV poses diverse challenges like virtual network function (VNF) placement and chaining, also called VNF-mapping. In this paper, we present an algorithm that solves VNF-placement and chaining in a metro WDM optical network equipped with MEC resources. Therefore, it solves the VNF-mapping in conjunction with the virtual topology design of the underlying optical backhaul network. Moreover, a version of the method providing protection against node failures is also presented. A simulation study is presented to show the importance of designing the three problems jointly, in contrast to other proposals of the literature that do not take the design of the underlying network into consideration when solving that problem. Furthermore, this paper also shows the advantages of using collaboration between MEC nodes to solve the VNF-mapping problem and the advantage of using shared protection schemes. The new algorithm outperforms other proposals in terms of both service blocking ratio, and number of active CPUs (thus reducing energy consumption). Finally, the impact of deploying different physical topologies for the optical backhaul network is also presented.Ministerio de Economía, Industria y Competitividad (grant TEC2017-84423-C3-1-P)Ministerio de Industria, Comercio y Turismo (grant BES 2015-074514)Spanish Thematic Network (contract RED2018-102585-T)INTERREG V-A España-Portugal (POCTEP) program (project 0677_DISRUPTIVE_2_E

    Server resource dimensioning and routing of service function chain in NFV network architectures

    Get PDF
    The Network Function Virtualization (NFV) technology aims at virtualizing the network service with the execution of the single service components in Virtual Machines activated on Commercial-off-the-shelf (COTS) servers. Any service is represented by the Service Function Chain (SFC) that is a set of VNFs to be executed according to a given order. The running of VNFs needs the instantiation of VNF instances (VNFI) that in general are software components executed on Virtual Machines. In this paper we cope with the routing and resource dimensioning problem in NFV architectures. We formulate the optimization problem and due to its NP-hard complexity, heuristics are proposed for both cases of offline and online traffic demand. We show how the heuristics works correctly by guaranteeing a uniform occupancy of the server processing capacity and the network link bandwidth. A consolidation algorithm for the power consumption minimization is also proposed. The application of the consolidation algorithm allows for a high power consumption saving that however is to be paid with an increase in SFC blocking probability
    corecore