1,893 research outputs found

    Performance-oriented Cloud Provisioning: Taxonomy and Survey

    Full text link
    Cloud computing is being viewed as the technology of today and the future. Through this paradigm, the customers gain access to shared computing resources located in remote data centers that are hosted by cloud providers (CP). This technology allows for provisioning of various resources such as virtual machines (VM), physical machines, processors, memory, network, storage and software as per the needs of customers. Application providers (AP), who are customers of the CP, deploy applications on the cloud infrastructure and then these applications are used by the end-users. To meet the fluctuating application workload demands, dynamic provisioning is essential and this article provides a detailed literature survey of dynamic provisioning within cloud systems with focus on application performance. The well-known types of provisioning and the associated problems are clearly and pictorially explained and the provisioning terminology is clarified. A very detailed and general cloud provisioning classification is presented, which views provisioning from different perspectives, aiding in understanding the process inside-out. Cloud dynamic provisioning is explained by considering resources, stakeholders, techniques, technologies, algorithms, problems, goals and more.Comment: 14 pages, 3 figures, 3 table

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Workload patterns for quality-driven dynamic cloud service configuration and auto-scaling

    Get PDF
    Cloud service providers negotiate SLAs for customer services they offer based on the reliability of performance and availability of their lower-level platform infrastructure. While availability management is more mature, performance management is less reliable. In order to support an iterative approach that supports the initial static infrastructure configuration as well as dynamic reconfiguration and auto-scaling, an accurate and efficient solution is required. We propose a prediction-based technique that combines a pattern matching approach with a traditional collaborative filtering solution to meet the accuracy and efficiency requirements. Service workload patterns abstract common infrastructure workloads from monitoring logs and act as a part of a first-stage high-performant configuration mechanism before more complex traditional methods are considered. This enhances current reactive rule-based scalability approaches and basic prediction techniques based on for example exponential smoothing

    Towards a novel biologically-inspired cloud elasticity framework

    Get PDF
    With the widespread use of the Internet, the popularity of web applications has significantly increased. Such applications are subject to unpredictable workload conditions that vary from time to time. For example, an e-commerce website may face higher workloads than normal during festivals or promotional schemes. Such applications are critical and performance related issues, or service disruption can result in financial losses. Cloud computing with its attractive feature of dynamic resource provisioning (elasticity) is a perfect match to host such applications. The rapid growth in the usage of cloud computing model, as well as the rise in complexity of the web applications poses new challenges regarding the effective monitoring and management of the underlying cloud computational resources. This thesis investigates the state-of-the-art elastic methods including the models and techniques for the dynamic management and provisioning of cloud resources from a service provider perspective. An elastic controller is responsible to determine the optimal number of cloud resources, required at a particular time to achieve the desired performance demands. Researchers and practitioners have proposed many elastic controllers using versatile techniques ranging from simple if-then-else based rules to sophisticated optimisation, control theory and machine learning based methods. However, despite an extensive range of existing elasticity research, the aim of implementing an efficient scaling technique that satisfies the actual demands is still a challenge to achieve. There exist many issues that have not received much attention from a holistic point of view. Some of these issues include: 1) the lack of adaptability and static scaling behaviour whilst considering completely fixed approaches; 2) the burden of additional computational overhead, the inability to cope with the sudden changes in the workload behaviour and the preference of adaptability over reliability at runtime whilst considering the fully dynamic approaches; and 3) the lack of considering uncertainty aspects while designing auto-scaling solutions. This thesis seeks solutions to address these issues altogether using an integrated approach. Moreover, this thesis aims at the provision of qualitative elasticity rules. This thesis proposes a novel biologically-inspired switched feedback control methodology to address the horizontal elasticity problem. The switched methodology utilises multiple controllers simultaneously, whereas the selection of a suitable controller is realised using an intelligent switching mechanism. Each controller itself depicts a different elasticity policy that can be designed using the principles of fixed gain feedback controller approach. The switching mechanism is implemented using a fuzzy system that determines a suitable controller/- policy at runtime based on the current behaviour of the system. Furthermore, to improve the possibility of bumpless transitions and to avoid the oscillatory behaviour, which is a problem commonly associated with switching based control methodologies, this thesis proposes an alternative soft switching approach. This soft switching approach incorporates a biologically-inspired Basal Ganglia based computational model of action selection. In addition, this thesis formulates the problem of designing the membership functions of the switching mechanism as a multi-objective optimisation problem. The key purpose behind this formulation is to obtain the near optimal (or to fine tune) parameter settings for the membership functions of the fuzzy control system in the absence of domain experts’ knowledge. This problem is addressed by using two different techniques including the commonly used Genetic Algorithm and an alternative less known economic approach called the Taguchi method. Lastly, we identify seven different kinds of real workload patterns, each of which reflects a different set of applications. Six real and one synthetic HTTP traces, one for each pattern, are further identified and utilised to evaluate the performance of the proposed methods against the state-of-the-art approaches

    Performance Evaluation Metrics for Cloud, Fog and Edge Computing: A Review, Taxonomy, Benchmarks and Standards for Future Research

    Get PDF
    Optimization is an inseparable part of Cloud computing, particularly with the emergence of Fog and Edge paradigms. Not only these emerging paradigms demand reevaluating cloud-native optimizations and exploring Fog and Edge-based solutions, but also the objectives require significant shift from considering only latency to energy, security, reliability and cost. Hence, it is apparent that optimization objectives have become diverse and lately Internet of Things (IoT)-specific born objectives must come into play. This is critical as incorrect selection of metrics can mislead the developer about the real performance. For instance, a latency-aware auto-scaler must be evaluated through latency-related metrics as response time or tail latency; otherwise the resource manager is not carefully evaluated even if it can reduce the cost. Given such challenges, researchers and developers are struggling to explore and utilize the right metrics to evaluate the performance of optimization techniques such as task scheduling, resource provisioning, resource allocation, resource scheduling and resource execution. This is challenging due to (1) novel and multi-layered computing paradigm, e.g., Cloud, Fog and Edge, (2) IoT applications with different requirements, e.g., latency or privacy, and (3) not having a benchmark and standard for the evaluation metrics. In this paper, by exploring the literature, (1) we present a taxonomy of the various real-world metrics to evaluate the performance of cloud, fog, and edge computing; (2) we survey the literature to recognize common metrics and their applications; and (3) outline open issues for future research. This comprehensive benchmark study can significantly assist developers and researchers to evaluate performance under realistic metrics and standards to ensure their objectives will be achieved in the production environments

    A survey and taxonomy of self-aware and self-adaptive cloud autoscaling systems

    Get PDF
    Autoscaling system can reconfigure cloud-based services and applications, through various configurations of cloud sofware and provisions of hardware resources, to adapt to the changing environment at runtime. Such a behavior offers the foundation for achieving elasticity in modern cloud computing paradigm. Given the dynamic and uncertain nature of the shared cloud infrastructure, cloud autoscaling system has been engineered as one of the most complex, sophisticated and intelligent artifacts created by human, aiming to achieve self-aware, self-adaptive and dependable runtime scaling. Yet, existing Self-aware and Self-adaptive Cloud Autoscaling System (SSCAS) is not mature to a state that it can be reliably exploited in the cloud. In this article, we survey the state-of-the-art research studies on SSCAS and provide a comprehensive taxonomy for this feld. We present detailed analysis of the results and provide insights on open challenges, as well as the promising directions that are worth investigated in the future work of this area of research. Our survey and taxonomy contribute to the fundamentals of engineering more intelligent autoscaling systems in the cloud
    • 

    corecore