254 research outputs found

    A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems

    Full text link
    In this paper we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware-experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results

    A Survey of Spiking Neural Network Accelerator on FPGA

    Full text link
    Due to the ability to implement customized topology, FPGA is increasingly used to deploy SNNs in both embedded and high-performance applications. In this paper, we survey state-of-the-art SNN implementations and their applications on FPGA. We collect the recent widely-used spiking neuron models, network structures, and signal encoding formats, followed by the enumeration of related hardware design schemes for FPGA-based SNN implementations. Compared with the previous surveys, this manuscript enumerates the application instances that applied the above-mentioned technical schemes in recent research. Based on that, we discuss the actual acceleration potential of implementing SNN on FPGA. According to our above discussion, the upcoming trends are discussed in this paper and give a guideline for further advancement in related subjects

    On microelectronic self-learning cognitive chip systems

    Get PDF
    After a brief review of machine learning techniques and applications, this Ph.D. thesis examines several approaches for implementing machine learning architectures and algorithms into hardware within our laboratory. From this interdisciplinary background support, we have motivations for novel approaches that we intend to follow as an objective of innovative hardware implementations of dynamically self-reconfigurable logic for enhanced self-adaptive, self-(re)organizing and eventually self-assembling machine learning systems, while developing this new particular area of research. And after reviewing some relevant background of robotic control methods followed by most recent advanced cognitive controllers, this Ph.D. thesis suggests that amongst many well-known ways of designing operational technologies, the design methodologies of those leading-edge high-tech devices such as cognitive chips that may well lead to intelligent machines exhibiting conscious phenomena should crucially be restricted to extremely well defined constraints. Roboticists also need those as specifications to help decide upfront on otherwise infinitely free hardware/software design details. In addition and most importantly, we propose these specifications as methodological guidelines tightly related to ethics and the nowadays well-identified workings of the human body and of its psyche

    FPGA design methodology for industrial control systems—a review

    Get PDF
    This paper reviews the state of the art of fieldprogrammable gate array (FPGA) design methodologies with a focus on industrial control system applications. This paper starts with an overview of FPGA technology development, followed by a presentation of design methodologies, development tools and relevant CAD environments, including the use of portable hardware description languages and system level programming/design tools. They enable a holistic functional approach with the major advantage of setting up a unique modeling and evaluation environment for complete industrial electronics systems. Three main design rules are then presented. These are algorithm refinement, modularity, and systematic search for the best compromise between the control performance and the architectural constraints. An overview of contributions and limits of FPGAs is also given, followed by a short survey of FPGA-based intelligent controllers for modern industrial systems. Finally, two complete and timely case studies are presented to illustrate the benefits of an FPGA implementation when using the proposed system modeling and design methodology. These consist of the direct torque control for induction motor drives and the control of a diesel-driven synchronous stand-alone generator with the help of fuzzy logic

    On FPGA implementations for bioinformatics, neural prosthetics and reinforcement learning problems.

    Get PDF
    Mak Sui Tung Terrence.Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.Includes bibliographical references (leaves 132-142).Abstracts in English and Chinese.Abstract --- p.iList of Tables --- p.ivList of Figures --- p.vAcknowledgements --- p.ixChapter 1. --- Introduction --- p.1Chapter 1.1 --- Bioinformatics --- p.1Chapter 1.2 --- Neural Prosthetics --- p.4Chapter 1.3 --- Learning in Uncertainty --- p.5Chapter 1.4 --- The Field Programmable Gate Array (FPGAs) --- p.7Chapter 1.5 --- Scope of the Thesis --- p.10Chapter 2. --- A Hybrid GA-DP Approach for Searching Equivalence Sets --- p.14Chapter 2.1 --- Introduction --- p.16Chapter 2.2 --- Equivalence Set Criterion --- p.18Chapter 2.3 --- Genetic Algorithm and Dynamic Programming --- p.19Chapter 2.3.1 --- Genetic Algorithm Formulation --- p.20Chapter 2.3.2 --- Bounded Mutation --- p.21Chapter 2.3.3 --- Conditioned Crossover --- p.22Chapter 2.3.4 --- Implementation --- p.22Chapter 2.4 --- FPGAs Implementation of GA-DP --- p.24Chapter 2.4.1 --- System Overview --- p.25Chapter 2.4.2 --- Parallel Computation for Transitive Closure --- p.26Chapter 2.4.3 --- Genetic Operation Realization --- p.28Chapter 2.5 --- Discussion --- p.30Chapter 2.6 --- Limitation and Future Work --- p.33Chapter 2.7 --- Conclusion --- p.34Chapter 3. --- An FPGA-based Architecture for Maximum-Likelihood Phylogeny Evaluation --- p.35Chapter 3.1 --- Introduction --- p.36Chapter 3.2 --- Maximum-Likelihood Model --- p.39Chapter 3.3 --- Hardware Mapping for Pruning Algorithm --- p.41Chapter 3.3.1 --- Related Works --- p.41Chapter 3.3.2 --- Number Representation --- p.42Chapter 3.3.3 --- Binary Tree Representation --- p.43Chapter 3.3.4 --- Binary Tree Traversal --- p.45Chapter 3.3.5 --- Maximum-Likelihood Evaluation Algorithm --- p.46Chapter 3.4 --- System Architecture --- p.49Chapter 3.4.1 --- Transition Probability Unit --- p.50Chapter 3.4.2 --- State-Parallel Computation Unit --- p.51Chapter 3.4.3 --- Error Computation --- p.54Chapter 3.5 --- Discussion --- p.56Chapter 3.5.1 --- Hardware Resource Consumption --- p.56Chapter 3.5.2 --- Delay Evaluation --- p.57Chapter 3.6 --- Conclusion --- p.59Chapter 4. --- Field Programmable Gate Array Implementation of Neuronal Ion Channel Dynamics --- p.61Chapter 4.1 --- Introduction --- p.62Chapter 4.2 --- Background --- p.63Chapter 4.2.1 --- Analog VLSI Model for Hebbian Synapse --- p.63Chapter 4.2.2 --- A Unifying Model of Bi-directional Synaptic Plasticity --- p.64Chapter 4.2.3 --- Non-NMDA Receptor Channel Regulation --- p.65Chapter 4.3 --- FPGAs Implementation --- p.65Chapter 4.3.1 --- FPGA Design Flow --- p.65Chapter 4.3.2 --- Digital Model of NMD A and AMPA receptors --- p.65Chapter 4.3.3 --- Synapse Modification --- p.67Chapter 4.4 --- Results --- p.68Chapter 4.4.1 --- Simulation Results --- p.68Chapter 4.5 --- Discussion --- p.70Chapter 4.6 --- Conclusion --- p.71Chapter 5. --- Continuous-Time and Discrete-Time Inference Networks for Distributed Dynamic Programming --- p.72Chapter 5.1 --- Introduction --- p.74Chapter 5.2 --- Background --- p.77Chapter 5.2.1 --- Markov decision process (MDPs) --- p.78Chapter 5.2.2 --- Learning in the MDPs --- p.80Chapter 5.2.3 --- Bellman Optimal Criterion --- p.80Chapter 5.2.4 --- Value Iteration --- p.81Chapter 5.3 --- A Computational Framework for Continuous-Time Inference Network --- p.82Chapter 5.3.1 --- Binary Relation Inference Network --- p.83Chapter 5.3.2 --- Binary Relation Inference Network for MDPs --- p.85Chapter 5.3.3 --- Continuous-Time Inference Network for MDPs --- p.87Chapter 5.4 --- Convergence Consideration --- p.88Chapter 5.5 --- Numerical Simulation --- p.90Chapter 5.5.1 --- Example 1: Random Walk --- p.90Chapter 5.5.2 --- Example 2: Random Walk on a Grid --- p.94Chapter 5.5.3 --- Example 3: Stochastic Shortest Path Problem --- p.97Chapter 5.5.4 --- Relationships Between λ and γ --- p.99Chapter 5.6 --- Discrete-Time Inference Network --- p.100Chapter 5.6.1 --- Results --- p.101Chapter 5.7 --- Conclusion --- p.102Chapter 6. --- On Distributed g-Learning Network --- p.104Chapter 6.1 --- Introduction --- p.105Chapter 6.2 --- Distributed Q-Learniing Network --- p.108Chapter 6.2.1 --- Distributed Q-Learning Network --- p.109Chapter 6.2.2 --- Q-Learning Network Architecture --- p.111Chapter 6.3 --- Experimental Results --- p.114Chapter 6.3.1 --- Random Walk --- p.114Chapter 6.3.2 --- The Shortest Path Problem --- p.116Chapter 6.4 --- Discussion --- p.120Chapter 6.4.1 --- Related Work --- p.121Chapter 6.5 --- FPGAs Implementation --- p.122Chapter 6.5.1 --- Distributed Registering Approach --- p.123Chapter 6.5.2 --- Serial BRAM Storing Approach --- p.124Chapter 6.5.3 --- Comparison --- p.125Chapter 6.5.4 --- Discussion --- p.127Chapter 6.6 --- Conclusion --- p.128Chapter 7. --- Summary --- p.129Bibliography --- p.132AppendixChapter A. --- Simplified Floating-Point Arithmetic --- p.143Chapter B. --- "Logarithm, Exponential and Division Implementation" --- p.144Chapter B.1 --- Introduction --- p.144Chapter B.2 --- Approximation Scheme --- p.145Chapter B.2.1 --- Logarithm --- p.145Chapter B.2.2 --- Exponentiation --- p.147Chapter B.2.3 --- Division --- p.148Chapter C. --- Analog VLSI Implementation --- p.150Chapter C.1 --- Site Function --- p.150Chapter C.1.1 --- Multiplication Cell --- p.150Chapter C.2 --- The Unit Function --- p.153Chapter C.3 --- The Inference Network Computation --- p.154Chapter C.4 --- Layout --- p.157Chapter C.5 --- Fabrication --- p.159Chapter C.5.1 --- Testing and Characterization --- p.16

    FPGAs in Industrial Control Applications

    Get PDF
    The aim of this paper is to review the state-of-the-art of Field Programmable Gate Array (FPGA) technologies and their contribution to industrial control applications. Authors start by addressing various research fields which can exploit the advantages of FPGAs. The features of these devices are then presented, followed by their corresponding design tools. To illustrate the benefits of using FPGAs in the case of complex control applications, a sensorless motor controller has been treated. This controller is based on the Extended Kalman Filter. Its development has been made according to a dedicated design methodology, which is also discussed. The use of FPGAs to implement artificial intelligence-based industrial controllers is then briefly reviewed. The final section presents two short case studies of Neural Network control systems designs targeting FPGAs

    Simulation and implementation of novel deep learning hardware architectures for resource constrained devices

    Get PDF
    Corey Lammie designed mixed signal memristive-complementary metal–oxide–semiconductor (CMOS) and field programmable gate arrays (FPGA) hardware architectures, which were used to reduce the power and resource requirements of Deep Learning (DL) systems; both during inference and training. Disruptive design methodologies, such as those explored in this thesis, can be used to facilitate the design of next-generation DL systems

    FPGA-based High-Performance Collision Detection: An Enabling Technique for Image-Guided Robotic Surgery

    Get PDF
    Collision detection, which refers to the computational problem of finding the relative placement or con-figuration of two or more objects, is an essential component of many applications in computer graphics and robotics. In image-guided robotic surgery, real-time collision detection is critical for preserving healthy anatomical structures during the surgical procedure. However, the computational complexity of the problem usually results in algorithms that operate at low speed. In this paper, we present a fast and accurate algorithm for collision detection between Oriented-Bounding-Boxes (OBBs) that is suitable for real-time implementation. Our proposed Sweep and Prune algorithm can perform a preliminary filtering to reduce the number of objects that need to be tested by the classical Separating Axis Test algorithm, while the OBB pairs of interest are preserved. These OBB pairs are re-checked by the Separating Axis Test algorithm to obtain accurate overlapping status between them. To accelerate the execution, our Sweep and Prune algorithm is tailor-made for the proposed method. Meanwhile, a high performance scalable hardware architecture is proposed by analyzing the intrinsic parallelism of our algorithm, and is implemented on FPGA platform. Results show that our hardware design on the FPGA platform can achieve around 8X higher running speed than the software design on a CPU platform. As a result, the proposed algorithm can achieve a collision frame rate of 1 KHz, and fulfill the requirement for the medical surgery scenario of Robot Assisted Laparoscopy.published_or_final_versio
    • …
    corecore