5,122 research outputs found

    Hardware acceleration architectures for MPEG-Based mobile video platforms: a brief overview

    Get PDF
    This paper presents a brief overview of past and current hardware acceleration (HwA) approaches that have been proposed for the most computationally intensive compression tools of the MPEG-4 standard. These approaches are classified based on their historical evolution and architectural approach. An analysis of both evolutionary and functional classifications is carried out in order to speculate on the possible trends of the HwA architectures to be employed in mobile video platforms

    A VLSI-design of the minimum entropy neuron

    Get PDF
    One of the most interesting domains of feedforward networks is the processing of sensor signals. There do exist some networks which extract most of the information by implementing the maximum entropy principle for Gaussian sources. This is done by transforming input patterns to the base of eigenvectors of the input autocorrelation matrix with the biggest eigenvalues. The basic building block of these networks is the linear neuron, learning with the Oja learning rule. Nevertheless, some researchers in pattern recognition theory claim that for pattern recognition and classification clustering transformations are needed which reduce the intra-class entropy. This leads to stable, reliable features and is implemented for Gaussian sources by a linear transformation using the eigenvectors with the smallest eigenvalues. In another paper (Brause 1992) it is shown that the basic building block for such a transformation can be implemented by a linear neuron using an Anti-Hebb rule and restricted weights. This paper shows the analog VLSI design for such a building block, using standard modules of multiplication and addition. The most tedious problem in this VLSI-application is the design of an analog vector normalization circuitry. It can be shown that the standard approaches of weight summation will not give the convergence to the eigenvectors for a proper feature transformation. To avoid this problem, our design differs significantly from the standard approaches by computing the real Euclidean norm. Keywords: minimum entropy, principal component analysis, VLSI, neural networks, surface approximation, cluster transformation, weight normalization circuit

    AER Auditory Filtering and CPG for Robot Control

    Get PDF
    Address-Event-Representation (AER) is a communication protocol for transferring asynchronous events between VLSI chips, originally developed for bio-inspired processing systems (for example, image processing). The event information in an AER system is transferred using a highspeed digital parallel bus. This paper presents an experiment using AER for sensing, processing and finally actuating a Robot. The AER output of a silicon cochlea is processed by an AER filter implemented on a FPGA to produce rhythmic walking in a humanoid robot (Redbot). We have implemented both the AER rhythm detector and the Central Pattern Generator (CPG) on a Spartan II FPGA which is part of a USB-AER platform developed by some of the authors.Commission of the European Communities IST-2001-34124 (CAVIAR)Comisión Interministerial de Ciencia y Tecnología TIC-2003-08164-C03-0

    Self-organized learning in multi-layer networks

    Get PDF
    We present a framework for the self-organized formation of high level learning by a statistical preprocessing of features. The paper focuses first on the formation of the features in the context of layers of feature processing units as a kind of resource-restricted associative multiresolution learning We clame that such an architecture must reach maturity by basic statistical proportions, optimizing the information processing capabilities of each layer. The final symbolic output is learned by pure association of features of different levels and kind of sensorial input. Finally, we also show that common error-correction learning for motor skills can be accomplished also by non-specific associative learning. Keywords: feedforward network layers, maximal information gain, restricted Hebbian learning, cellular neural nets, evolutionary associative learnin
    corecore