623 research outputs found

    Classification of networks-on-chip in the context of analysis of promising self-organizing routing algorithms

    Full text link
    This paper contains a detailed analysis of the current state of the network-on-chip (NoC) research field, based on which the authors propose the new NoC classification that is more complete in comparison with previous ones. The state of the domain associated with wireless NoC is investigated, as the transition to these NoCs reduces latency. There is an assumption that routing algorithms from classical network theory may demonstrate high performance. So, in this article, the possibility of the usage of self-organizing algorithms in a wireless NoC is also provided. This approach has a lot of advantages described in the paper. The results of the research can be useful for developers and NoC manufacturers as specific recommendations, algorithms, programs, and models for the organization of the production and technological process.Comment: 10 p., 5 fig. Oral presentation on APSSE 2021 conferenc

    Location Management in Mobile Ad Hoc Wireless Networks Using Quorums and Clusters

    Get PDF
    Position-based reactive routing is a scalable solution for routing in mobile ad hoc networks. The route discovery algorithm in position-based routing can be efficiently implemented only if the source knows the current address of the destination. In this paper, a quorum-based location management scheme is proposed. Location servers are selected using the minimum dominating set (MDS) approach, and are further organized into quorums for location update and location query. when a mobile node moves, it updates its location servers in the update quorum; when a node requests the location information of another node, it will send a query message to the location servers in the query quorum. We propose to use the position-based quorum system, which is easy to construct and guarantees that the update quorums always intersect with the query quorums so that at least one location server in the query quorum is aware of the most recent location of the mobile node. Clusters are introduced for large scale ad hoc networks for scalability. Experiment results show that the proposed scheme provides good scalability when network size increases

    Greedy routing with guaranteed delivery using Ricci flows

    Get PDF
    Greedy forwarding with geographical locations in a wireless sensor network may fail at a local minimum. In this paper we propose to use conformal mapping to compute a new embedding of the sensor nodes in the plane such that greedy forwarding with the virtual coordinates guarantees delivery. In particular, we extract a planar triangulation of the sensor network with non-triangular faces as holes, by either using the nodes ’ location or using a landmark-based scheme without node location. The conformal map is computed with Ricci flow such that all the non-triangular faces are mapped to perfect circles. Thus greedy forwarding will never get stuck at an intermediate node. The computation of the conformal map and the virtual coordinates is performed at a preprocessing phase and can be implemented by local gossip-style computation. The method applies to both unit disk graph models and quasi-unit disk graph models. Simulation results are presented for these scenarios

    Energy-efficient routing in the proximity of a complicated hole in wireless sensor networks

    Get PDF
    AbstractA quest for geographic routing schemes of wireless sensor networks when sensor nodes are deployed in areas with obstacles has resulted in numerous ingenious proposals and techniques. However, there is a lack of solutions for complicated cases wherein the source or the sink nodes are located close to a specific hole, especially in cavern-like regions of large complex-shaped holes. In this paper, we propose a geographic routing scheme to deal with the existence of complicated-shape holes in an effective manner. Our proposed routing scheme achieves routes around holes with the (1+ϵ\epsilon ϵ )-stretch. Experimental results show that our routing scheme yields the highest load balancing and the most extended network lifetime compared to other well-known routing algorithms as well

    On the Complexity of Scheduling in Wireless Networks

    Get PDF
    We consider the problem of throughput-optimal scheduling in wireless networks subject to interference constraints. We model the interference using a family of K-hop interference models, under which no two links within a K-hop distance can successfully transmit at the same time. For a given K, we can obtain a throughput-optimal scheduling policy by solving the well-known maximum weighted matching problem. We show that for K > 1, the resulting problems are NP-Hard that cannot be approximated within a factor that grows polynomially with the number of nodes. Interestingly, for geometric unit-disk graphs that can be used to describe a wide range of wireless networks, the problems admit polynomial time approximation schemes within a factor arbitrarily close to 1. In these network settings, we also show that a simple greedy algorithm can provide a 49-approximation, and the maximal matching scheduling policy, which can be easily implemented in a distributed fashion, achieves a guaranteed fraction of the capacity region for "all K." The geometric constraints are crucial to obtain these throughput guarantees. These results are encouraging as they suggest that one can develop low-complexity distributed algorithms to achieve near-optimal throughput for a wide range of wireless networksopen1
    corecore