116 research outputs found

    Vector quantization

    Get PDF
    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts

    SAR data compression: Application, requirements, and designs

    Get PDF
    The feasibility of reducing data volume and data rate is evaluated for the Earth Observing System (EOS) Synthetic Aperture Radar (SAR). All elements of data stream from the sensor downlink data stream to electronic delivery of browse data products are explored. The factors influencing design of a data compression system are analyzed, including the signal data characteristics, the image quality requirements, and the throughput requirements. The conclusion is that little or no reduction can be achieved in the raw signal data using traditional data compression techniques (e.g., vector quantization, adaptive discrete cosine transform) due to the induced phase errors in the output image. However, after image formation, a number of techniques are effective for data compression

    Pipeline synthetic aperture radar data compression utilizing systolic binary tree-searched architecture for vector quantization

    Get PDF
    A system for data compression utilizing systolic array architecture for Vector Quantization (VQ) is disclosed for both full-searched and tree-searched. For a tree-searched VQ, the special case of a Binary Tree-Search VQ (BTSVQ) is disclosed with identical Processing Elements (PE) in the array for both a Raw-Codebook VQ (RCVQ) and a Difference-Codebook VQ (DCVQ) algorithm. A fault tolerant system is disclosed which allows a PE that has developed a fault to be bypassed in the array and replaced by a spare at the end of the array, with codebook memory assignment shifted one PE past the faulty PE of the array

    Real-time video compression using DVQ and suffix trees

    Get PDF
    Video processing is a wide and varied subject area. Video compression is an important but difficult problem in video processing. Several methods and standards exist which address this problem with varying degrees of success depending on the performance measures adopted. The present research work focuses on the real-time aspect of video processing.;In particular we propose a real-time video compression algorithm based on the concept of differential vector quantization and the suffix tree. Differential vector quantization is a relatively new area that focuses on efficient compression of data. The present work integrates the compression provided by Differential vector Quantization and the speed achieved by using the suffix tree data structure to develop a new real-time video compression scheme.;Traditionally Suffix trees are used for string searching. In the present work, we exploit the unique structure of the suffix tree to represent image data on a tree as a DVQ dictionary. To support the special characteristics of natural images and video, the traditional suffix tree is extended to handle k-errors in the matching. The result is an orders of magnitude speedup in the matching process, making it possible to compress the video in real-time, without any special hardware.;Experimental results show the performance of the proposed methodology

    Image compression techniques using vector quantization

    Get PDF

    Proceedings of the Scientific Data Compression Workshop

    Get PDF
    Continuing advances in space and Earth science requires increasing amounts of data to be gathered from spaceborne sensors. NASA expects to launch sensors during the next two decades which will be capable of producing an aggregate of 1500 Megabits per second if operated simultaneously. Such high data rates cause stresses in all aspects of end-to-end data systems. Technologies and techniques are needed to relieve such stresses. Potential solutions to the massive data rate problems are: data editing, greater transmission bandwidths, higher density and faster media, and data compression. Through four subpanels on Science Payload Operations, Multispectral Imaging, Microwave Remote Sensing and Science Data Management, recommendations were made for research in data compression and scientific data applications to space platforms

    New Directions in Subband Coding

    Get PDF
    Two very different subband coders are described. The first is a modified dynamic bit-allocation-subband coder (D-SBC) designed for variable rate coding situations and easily adaptable to noisy channel environments. It can operate at rates as low as 12 kb/s and still give good quality speech. The second coder is a 16-kb/s waveform coder, based on a combination of subband coding and vector quantization (VQ-SBC). The key feature of this coder is its short coding delay, which makes it suitable for real-time communication networks. The speech quality of both coders has been enhanced by adaptive postfiltering. The coders have been implemented on a single AT&T DSP32 signal processo
    • …
    corecore