1,334 research outputs found

    An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics

    Full text link
    Near-sensor data analytics is a promising direction for IoT endpoints, as it minimizes energy spent on communication and reduces network load - but it also poses security concerns, as valuable data is stored or sent over the network at various stages of the analytics pipeline. Using encryption to protect sensitive data at the boundary of the on-chip analytics engine is a way to address data security issues. To cope with the combined workload of analytics and encryption in a tight power envelope, we propose Fulmine, a System-on-Chip based on a tightly-coupled multi-core cluster augmented with specialized blocks for compute-intensive data processing and encryption functions, supporting software programmability for regular computing tasks. The Fulmine SoC, fabricated in 65nm technology, consumes less than 20mW on average at 0.8V achieving an efficiency of up to 70pJ/B in encryption, 50pJ/px in convolution, or up to 25MIPS/mW in software. As a strong argument for real-life flexible application of our platform, we show experimental results for three secure analytics use cases: secure autonomous aerial surveillance with a state-of-the-art deep CNN consuming 3.16pJ per equivalent RISC op; local CNN-based face detection with secured remote recognition in 5.74pJ/op; and seizure detection with encrypted data collection from EEG within 12.7pJ/op.Comment: 15 pages, 12 figures, accepted for publication to the IEEE Transactions on Circuits and Systems - I: Regular Paper

    Design of programmable hardware security modules for enhancing blockchain based security framework

    Get PDF
    Globalization of the chip design and manufacturing industry has imposed significant threats to the hardware security of integrated circuits (ICs). It has made ICs more susceptible to various hardware attacks. Blockchain provides a trustworthy and distributed platform to store immutable records related to the evidence of intellectual property (IP) creation, authentication of provenance, and confidential data storage. However, blockchain encounters major security challenges due to its decentralized nature of ledgers that contain sensitive data. The research objective is to design a dedicated programmable hardware security modules scheme to safeguard and maintain sensitive information contained in the blockchain networks in the context of the IC supply chain. Thus, the blockchain framework could rely on the proposed hardware security modules and separate the entire cryptographic operations within the system as stand-alone hardware units. This work put forth a novel approach that could be considered and utilized to enhance blockchain security in real-time. The critical cryptographic components in blockchain secure hash algorithm-256 (SHA-256) and the elliptic curve digital signature algorithm are designed as separate entities to enhance the security of the blockchain framework. Physical unclonable functions are adopted to perform authentication of transactions in the blockchain. Relative comparison of designed modules with existing works clearly depicts the upper hand of the former in terms of performance parameters

    ENERGY-EFFICIENT AND SECURE HARDWARE FOR INTERNET OF THINGS (IoT) DEVICES

    Get PDF
    Internet of Things (IoT) is a network of devices that are connected through the Internet to exchange the data for intelligent applications. Though IoT devices provide several advantages to improve the quality of life, they also present challenges related to security. The security issues related to IoT devices include leakage of information through Differential Power Analysis (DPA) based side channel attacks, authentication, piracy, etc. DPA is a type of side-channel attack where the attacker monitors the power consumption of the device to guess the secret key stored in it. There are several countermeasures to overcome DPA attacks. However, most of the existing countermeasures consume high power which makes them not suitable to implement in power constraint devices. IoT devices are battery operated, hence it is important to investigate the methods to design energy-efficient and secure IoT devices not susceptible to DPA attacks. In this research, we have explored the usefulness of a novel computing platform called adiabatic logic, low-leakage FinFET devices and Magnetic Tunnel Junction (MTJ) Logic-in-Memory (LiM) architecture to design energy-efficient and DPA secure hardware. Further, we have also explored the usefulness of adiabatic logic in the design of energy-efficient and reliable Physically Unclonable Function (PUF) circuits to overcome the authentication and piracy issues in IoT devices. Adiabatic logic is a low-power circuit design technique to design energy-efficient hardware. Adiabatic logic has reduced dynamic switching energy loss due to the recycling of charge to the power clock. As the first contribution of this dissertation, we have proposed a novel DPA-resistant adiabatic logic family called Energy-Efficient Secure Positive Feedback Adiabatic Logic (EE-SPFAL). EE-SPFAL based circuits are energy-efficient compared to the conventional CMOS based design because of recycling the charge after every clock cycle. Further, EE-SPFAL based circuits consume uniform power irrespective of input data transition which makes them resilience against DPA attacks. Scaling of CMOS transistors have served the industry for more than 50 years in providing integrated circuits that are denser, and cheaper along with its high performance, and low power. However, scaling of the transistors leads to increase in leakage current. Increase in leakage current reduces the energy-efficiency of the computing circuits,and increases their vulnerability to DPA attack. Hence, it is important to investigate the crypto circuits in low leakage devices such as FinFET to make them energy-efficient and DPA resistant. In this dissertation, we have proposed a novel FinFET based Secure Adiabatic Logic (FinSAL) family. FinSAL based designs utilize the low-leakage FinFET device along with adiabatic logic principles to improve energy-efficiency along with its resistance against DPA attack. Recently, Magnetic Tunnel Junction (MTJ)/CMOS based Logic-in-Memory (LiM) circuits have been explored to design low-power non-volatile hardware. Some of the advantages of MTJ device include non-volatility, near-zero leakage power, high integration density and easy compatibility with CMOS devices. However, the differences in power consumption between the switching of MTJ devices increase the vulnerability of Differential Power Analysis (DPA) based side-channel attack. Further, the MTJ/CMOS hybrid logic circuits which require frequent switching of MTJs are not very energy-efficient due to the significant energy required to switch the MTJ devices. In the third contribution of this dissertation, we have investigated a novel approach of building cryptographic hardware in MTJ/CMOS circuits using Look-Up Table (LUT) based method where the data stored in MTJs are constant during the entire encryption/decryption operation. Currently, high supply voltage is required in both writing and sensing operations of hybrid MTJ/CMOS based LiM circuits which consumes a considerable amount of energy. In order to meet the power budget in low-power devices, it is important to investigate the novel design techniques to design ultra-low-power MTJ/CMOS circuits. In the fourth contribution of this dissertation, we have proposed a novel energy-efficient Secure MTJ/CMOS Logic (SMCL) family. The proposed SMCL logic family consumes uniform power irrespective of data transition in MTJ and more energy-efficient compared to the state-of-art MTJ/ CMOS designs by using charge sharing technique. The other important contribution of this dissertation is the design of reliable Physical Unclonable Function (PUF). Physically Unclonable Function (PUF) are circuits which are used to generate secret keys to avoid the piracy and device authentication problems. However, existing PUFs consume high power and they suffer from the problem of generating unreliable bits. This dissertation have addressed this issue in PUFs by designing a novel adiabatic logic based PUF. The time ramp voltages in adiabatic PUF is utilized to improve the reliability of the PUF along with its energy-efficiency. Reliability of the adiabatic logic based PUF proposed in this dissertation is tested through simulation based temperature variations and supply voltage variations

    FPGA-Based PUF Designs: A Comprehensive Review and Comparative Analysis

    Get PDF
    Field-programmable gate arrays (FPGAs) have firmly established themselves as dynamic platforms for the implementation of physical unclonable functions (PUFs). Their intrinsic reconfigurability and profound implications for enhancing hardware security make them an invaluable asset in this realm. This groundbreaking study not only dives deep into the universe of FPGA-based PUF designs but also offers a comprehensive overview coupled with a discerning comparative analysis. PUFs are the bedrock of device authentication and key generation and the fortification of secure cryptographic protocols. Unleashing the potential of FPGA technology expands the horizons of PUF integration across diverse hardware systems. We set out to understand the fundamental ideas behind PUF and how crucially important it is to current security paradigms. Different FPGA-based PUF solutions, including static, dynamic, and hybrid systems, are closely examined. Each design paradigm is painstakingly examined to reveal its special qualities, functional nuances, and weaknesses. We closely assess a variety of performance metrics, including those related to distinctiveness, reliability, and resilience against hostile threats. We compare various FPGA-based PUF systems against one another to expose their unique advantages and disadvantages. This study provides system designers and security professionals with the crucial information they need to choose the best PUF design for their particular applications. Our paper provides a comprehensive view of the functionality, security capabilities, and prospective applications of FPGA-based PUF systems. The depth of knowledge gained from this research advances the field of hardware security, enabling security practitioners, researchers, and designers to make wise decisions when deciding on and implementing FPGA-based PUF solutions.publishedVersio

    Design for Test and Hardware Security Utilizing Tester Authentication Techniques

    Get PDF
    Design-for-Test (DFT) techniques have been developed to improve testability of integrated circuits. Among the known DFT techniques, scan-based testing is considered an efficient solution for digital circuits. However, scan architecture can be exploited to launch a side channel attack. Scan chains can be used to access a cryptographic core inside a system-on-chip to extract critical information such as a private encryption key. For a scan enabled chip, if an attacker is given unlimited access to apply all sorts of inputs to the Circuit-Under-Test (CUT) and observe the outputs, the probability of gaining access to critical information increases. In this thesis, solutions are presented to improve hardware security and protect them against attacks using scan architecture. A solution based on tester authentication is presented in which, the CUT requests the tester to provide a secret code for authentication. The tester authentication circuit limits the access to the scan architecture to known testers. Moreover, in the proposed solution the number of attempts to apply test vectors and observe the results through the scan architecture is limited to make brute-force attacks practically impossible. A tester authentication utilizing a Phase Locked Loop (PLL) to encrypt the operating frequency of both DUT/Tester has also been presented. In this method, the access to the critical security circuits such as crypto-cores are not granted in the test mode. Instead, a built-in self-test method is used in the test mode to protect the circuit against scan-based attacks. Security for new generation of three-dimensional (3D) integrated circuits has been investigated through 3D simulations COMSOL Multiphysics environment. It is shown that the process of wafer thinning for 3D stacked IC integration reduces the leakage current which increases the chip security against side-channel attacks
    corecore