1,322 research outputs found

    The Analogue Computer as a Voltage-Controlled Synthesiser

    Get PDF
    This paper re-appraises the role of analogue computers within electronic and computer music and provides some pointers to future areas of research. It begins by introducing the idea of analogue computing and placing in the context of sound and music applications. This is followed by a brief examination of the classic constituents of an analogue computer, contrasting these with the typical modular voltage-controlled synthesiser. Two examples are presented, leading to a discussion on some parallels between these two technologies. This is followed by an examination of the current state-of-the-art in analogue computation and its prospects for applications in computer and electronic music

    Sound Recognition System Using Spiking and MLP Neural Networks

    Get PDF
    In this paper, we explore the capabilities of a sound classification system that combines a Neuromorphic Auditory System for feature extraction and an artificial neural network for classification. Two models of neural network have been used: Multilayer Perceptron Neural Network and Spiking Neural Network. To compare their accuracies, both networks have been developed and trained to recognize pure tones in presence of white noise. The spiking neural network has been implemented in a FPGA device. The neuromorphic auditory system that is used in this work produces a form of representation that is analogous to the spike outputs of the biological cochlea. Both systems are able to distinguish the different sounds even in the presence of white noise. The recognition system based in a spiking neural networks has better accuracy, above 91 %, even when the sound has white noise with the same power.Ministerio de EconomĂ­a y Competitividad TEC2012-37868-C04-02Junta de AndalucĂ­a P12-TIC-130

    On the synthesis and processing of high quality audio signals by parallel computers

    Get PDF
    This work concerns the application of new computer architectures to the creation and manipulation of high-quality audio bandwidth signals. The configuration of both the hardware and software in such systems falls under consideration in the three major sections which present increasing levels of algorithmic concurrency. In the first section, the programs which are described are distributed in identical copies across an array of processing elements; these programs run autonomously, generating data independently, but with control parameters peculiar to each copy: this type of concurrency is referred to as isonomic}The central section presents a structure which distributes tasks across an arbitrary network of processors; the flow of control in such a program is quasi- indeterminate, and controlled on a demand basis by the rate of completion of the slave tasks and their irregular interaction with the master. Whilst that interaction is, in principle, deterministic, it is also data-dependent; the dynamic nature of task allocation demands that no a priori knowledge of the rate of task completion be required. This type of concurrency is called dianomic? Finally, an architecture is described which will support a very high level of algorithmic concurrency. The programs which make efficient use of such a machine are designed not by considering flow of control, but by considering flow of data. Each atomic algorithmic unit is made as simple as possible, which results in the extensive distribution of a program over very many processing elements. Programs designed by considering only the optimum data exchange routes are said to exhibit systolic^ concurrency. Often neglected in the study of system design are those provisions necessary for practical implementations. It was intended to provide users with useful application programs in fulfilment of this study; the target group is electroacoustic composers, who use digital signal processing techniques in the context of musical composition. Some of the algorithms in use in this field are highly complex, often requiring a quantity of processing for each sample which exceeds that currently available even from very powerful computers. Consequently, applications tend to operate not in 'real-time' (where the output of a system responds to its input apparently instantaneously), but by the manipulation of sounds recorded digitally on a mass storage device. The first two sections adopt existing, public-domain software, and seek to increase its speed of execution significantly by parallel techniques, with the minimum compromise of functionality and ease of use. Those chosen are the general- purpose direct synthesis program CSOUND, from M.I.T., and a stand-alone phase vocoder system from the C.D.P..(^4) In each case, the desired aim is achieved: to increase speed of execution by two orders of magnitude over the systems currently in use by composers. This requires substantial restructuring of the programs, and careful consideration of the best computer architectures on which they are to run concurrently. The third section examines the rationale behind the use of computers in music, and begins with the implementation of a sophisticated electronic musical instrument capable of a degree of expression at least equal to its acoustic counterparts. It seems that the flexible control of such an instrument demands a greater computing resource than the sound synthesis part. A machine has been constructed with the intention of enabling the 'gestural capture' of performance information in real-time; the structure of this computer, which has one hundred and sixty high-performance microprocessors running in parallel, is expounded; and the systolic programming techniques required to take advantage of such an array are illustrated in the Occam programming language

    A Binaural Neuromorphic Auditory Sensor for FPGA: A Spike Signal Processing Approach

    Get PDF
    This paper presents a new architecture, design flow, and field-programmable gate array (FPGA) implementation analysis of a neuromorphic binaural auditory sensor, designed completely in the spike domain. Unlike digital cochleae that decompose audio signals using classical digital signal processing techniques, the model presented in this paper processes information directly encoded as spikes using pulse frequency modulation and provides a set of frequency-decomposed audio information using an address-event representation interface. In this case, a systematic approach to design led to a generic process for building, tuning, and implementing audio frequency decomposers with different features, facilitating synthesis with custom features. This allows researchers to implement their own parameterized neuromorphic auditory systems in a low-cost FPGA in order to study the audio processing and learning activity that takes place in the brain. In this paper, we present a 64-channel binaural neuromorphic auditory system implemented in a Virtex-5 FPGA using a commercial development board. The system was excited with a diverse set of audio signals in order to analyze its response and characterize its features. The neuromorphic auditory system response times and frequencies are reported. The experimental results of the proposed system implementation with 64-channel stereo are: a frequency range between 9.6 Hz and 14.6 kHz (adjustable), a maximum output event rate of 2.19 Mevents/s, a power consumption of 29.7 mW, the slices requirements of 11 141, and a system clock frequency of 27 MHz.Ministerio de EconomĂ­a y Competitividad TEC2012-37868-C04-02Junta de AndalucĂ­a P12-TIC-130

    Algorithms and architectures for the multirate additive synthesis of musical tones

    Get PDF
    In classical Additive Synthesis (AS), the output signal is the sum of a large number of independently controllable sinusoidal partials. The advantages of AS for music synthesis are well known as is the high computational cost. This thesis is concerned with the computational optimisation of AS by multirate DSP techniques. In note-based music synthesis, the expected bounds of the frequency trajectory of each partial in a finite lifecycle tone determine critical time-invariant partial-specific sample rates which are lower than the conventional rate (in excess of 40kHz) resulting in computational savings. Scheduling and interpolation (to suppress quantisation noise) for many sample rates is required, leading to the concept of Multirate Additive Synthesis (MAS) where these overheads are minimised by synthesis filterbanks which quantise the set of available sample rates. Alternative AS optimisations are also appraised. It is shown that a hierarchical interpretation of the QMF filterbank preserves AS generality and permits efficient context-specific adaptation of computation to required note dynamics. Practical QMF implementation and the modifications necessary for MAS are discussed. QMF transition widths can be logically excluded from the MAS paradigm, at a cost. Therefore a novel filterbank is evaluated where transition widths are physically excluded. Benchmarking of a hypothetical orchestral synthesis application provides a tentative quantitative analysis of the performance improvement of MAS over AS. The mapping of MAS into VLSI is opened by a review of sine computation techniques. Then the functional specification and high-level design of a conceptual MAS Coprocessor (MASC) is developed which functions with high autonomy in a loosely-coupled master- slave configuration with a Host CPU which executes filterbanks in software. Standard hardware optimisation techniques are used, such as pipelining, based upon the principle of an application-specific memory hierarchy which maximises MASC throughput

    Algorithms and VLSI architectures for parametric additive synthesis

    Get PDF
    A parametric additive synthesis approach to sound synthesis is advantageous as it can model sounds in a large scale manner, unlike the classical sinusoidal additive based synthesis paradigms. It is known that a large body of naturally occurring sounds are resonant in character and thus fit the concept well. This thesis is concerned with the computational optimisation of a super class of form ant synthesis which extends the sinusoidal parameters with a spread parameter known as band width. Here a modified formant algorithm is introduced which can be traced back to work done at IRCAM, Paris. When impulse driven, a filter based approach to modelling a formant limits the computational work-load. It is assumed that the filter's coefficients are fixed at initialisation, thus avoiding interpolation which can cause the filter to become chaotic. A filter which is more complex than a second order section is required. Temporal resolution of an impulse generator is achieved by using a two stage polyphase decimator which drives many filterbanks. Each filterbank describes one formant and is composed of sub-elements which allow variation of the formant’s parameters. A resource manager is discussed to overcome the possibility of all sub- banks operating in unison. All filterbanks for one voice are connected in series to the impulse generator and their outputs are summed and scaled accordingly. An explorative study of number systems for DSP algorithms and their architectures is investigated. I invented a new theoretical mechanism for multi-level logic based DSP. Its aims are to reduce the number of transistors and to increase their functionality. A review of synthesis algorithms and VLSI architectures are discussed in a case study between a filter based bit-serial and a CORDIC based sinusoidal generator. They are both of similar size, but the latter is always guaranteed to be stable

    A VLSI DSP DESIGN AND IMPLEMENTATION OF COMB FILTER USING UN-FOLDING METHODOLOGY

    Get PDF
    In signal processing, a comb filter adds a delayed version of a signal to itself, causing constructive and destructive interference. Comb filters are used in a variety of signal processing applications that is Cascaded Integrator-Comb filters, Audio effects, including echo, flanging, and digital waveguide synthesis and various other applications. Comb filter when implemented has lower through-put as the sample period can not be achieved equal to the iteration bound because node computation time of comb filter is larger than the iteration bound. Hence throughput remains less. This paper present the comb filter using one of the methodology needed to design custom or semi custom VLSI circuits named as Un-Folding which increases the throughput of the comb filter. Un-Folding is a transformation technique that can be applied to a DSP program to create a new program describing more than one iteration of the original program. It can unravel hidden con-currency in digital signal processing systems described by DFGs. Therefore, unfolding has been used for the sample period reduction of the comb filter for its higher throughput

    Real-time sound synthesis on a multi-processor platform

    Get PDF
    Real-time sound synthesis means that the calculation and output of each sound sample for a channel of audio information must be completed within a sample period. At a broadcasting standard, a sampling rate of 32,000 Hz, the maximum period available is 31.25 ÎŒsec. Such requirements demand a large amount of data processing power. An effective solution for this problem is a multi-processor platform; a parallel and distributed processing system. The suitability of the MIDI [Music Instrument Digital Interface] standard, published in 1983, as a controller for real-time applications is examined. Many musicians have expressed doubts on the decade old standard's ability for real-time performance. These have been investigated by measuring timing in various musical gestures, and by comparing these with the subjective characteristics of human perception. An implementation and its optimisation of real-time additive synthesis programs on a multi-transputer network are described. A prototype 81-polyphonic-note- organ configuration was implemented. By devising and deploying monitoring processes, the network's performance was measured and enhanced, leading to an efficient usage; the 88-note configuration. Since 88 simultaneous notes are rarely necessary in most performances, a scheduling program for dynamic note allocation was then introduced to achieve further efficiency gains. Considering calculation redundancies still further, a multi-sampling rate approach was applied as a further step to achieve an optimal performance. The theories underlining sound granulation, as a means of constructing complex sounds from grains, and the real-time implementation of this technique are outlined. The idea of sound granulation is quite similar to the quantum-wave theory, "acoustic quanta". Despite the conceptual simplicity, the signal processing requirements set tough demands, providing a challenge for this audio synthesis engine. Three issues arising from the results of the implementations above are discussed; the efficiency of the applications implemented, provisions for new processors and an optimal network architecture for sound synthesis
    • 

    corecore