9,399 research outputs found

    Parallel VLSI architecture emulation and the organization of APSA/MPP

    Get PDF
    The Applicative Programming System Architecture (APSA) combines an applicative language interpreter with a novel parallel computer architecture that is well suited for Very Large Scale Integration (VLSI) implementation. The Massively Parallel Processor (MPP) can simulate VLSI circuits by allocating one processing element in its square array to an area on a square VLSI chip. As long as there are not too many long data paths, the MPP can simulate a VLSI clock cycle very rapidly. The APSA circuit contains a binary tree with a few long paths and many short ones. A skewed H-tree layout allows every processing element to simulate a leaf cell and up to four tree nodes, with no loss in parallelism. Emulation of a key APSA algorithm on the MPP resulted in performance 16,000 times faster than a Vax. This speed will make it possible for the APSA language interpreter to run fast enough to support research in parallel list processing algorithms

    The Rolf of Test Chips in Coordinating Logic and Circuit Design and Layout Aids for VLSI

    Get PDF
    This paper emphasizes the need for multipurpose test chips and comprehensive procedures for use in supplying accurate input data to both logic and circuit simulators and chip layout aids. It is shown that the location of test structures within test chips is critical in obtaining representative data, because geometrical distortions introduced during the photomasking process can lead to significant intrachip parameter variations. In order to transfer test chip designs quickly, accurately, and economically, a commonly accepted portable chip layout notation and commonly accepted parametric tester language are needed. In order to measure test chips more accurately and more rapidly, parametric testers with improved architecture need to be developed in conjunction with innovative test structures with on-chip signal conditioning

    A Multiproject Chip Approach to the Teaching of Analog MOS LSI and VLSI

    Get PDF
    Multiproject chip implementation has been used in teaching analog MOS circuit design. After having worked with computer simulation and layout aids in homework problems, students designed novel circuits including several high performance op amps, an A/D converter, a switched capacitor filter, a 1 K dynamic RAM, and a variety of less conventional MOS circuits such as a VII converter, an AC/DC converter, an AM radio receiver, a digitally-controlled analog signal processor, and on-chip circuitry for measuring transistor capacitances. These circuits were laid out as part of an NMOS multiproject chip. Several of the designs exhibit a considerable degree of innovation; fabrication pending, computer simulation shows that some may be pushing the state of the art. Several designs are of interest to digital designers; in fact, the course has provided knowledge and technique needed for detailed digital circuit design at the gate level

    Analog neural networks for real-time constrained optimization

    Get PDF
    Architectures and circuit techniques for implementing general piecewise constrained optimization problems using VLSI techniques are explored. Discrete-time analog techniques are considered due to their inherent accuracy, programmability, and reconfigurability. A general architecture for minimizing piecewise functions by using gradient schemes is introduced. Switched-capacitor (SC) building blocks featuring improved characteristics in terms of area occupation and operation speed are presented. The implementation of the architectures by using the newest switched-current techniques is discussed. The layout of a 3-μm CMOS SC prototype for a quadratic optimization problem with linear constraints is given
    corecore