637 research outputs found

    A Novel Approach to Ontology Management

    Get PDF
    The term ontology is defined as the explicit specification of a conceptualization. While much of the prior research has focused on technical aspects of ontology management, little attention has been paid to the investigation of issues that limit the widespread use of ontologies and the evaluation of the effectiveness of ontologies in improving task performance. This dissertation addresses this void through the development of approaches to ontology creation, refinement, and evaluation. This study follows a multi-paper model focusing on ontology creation, refinement, and its evaluation. The first study develops and evaluates a method for ontology creation using knowledge available on the Web. The second study develops a methodology for ontology refinement through pruning and empirically evaluates the effectiveness of this method. The third study investigates the impact of an ontology in use case modeling, which is a complex, knowledge intensive organizational task in the context of IS development. The three studies follow the design science research approach, and each builds and evaluates IT artifacts. These studies contribute to knowledge by developing solutions to three important issues in the effective development and use of ontologies

    The Cardiac Atlas Project--An Imaging Database for Computational Modeling and Statistical Atlases of the Heart

    Get PDF
    MOTIVATION: Integrative mathematical and statistical models of cardiac anatomy and physiology can play a vital role in understanding cardiac disease phenotype and planning therapeutic strategies. However, the accuracy and predictive power of such models is dependent upon the breadth and depth of noninvasive imaging datasets. The Cardiac Atlas Project (CAP) has established a large-scale database of cardiac imaging examinations and associated clinical data in order to develop a shareable, web-accessible, structural and functional atlas of the normal and pathological heart for clinical, research and educational purposes. A goal of CAP is to facilitate collaborative statistical analysis of regional heart shape and wall motion and characterize cardiac function among and within population groups. RESULTS: Three main open-source software components were developed: (i) a database with web-interface; (ii) a modeling client for 3D + time visualization and parametric description of shape and motion; and (iii) open data formats for semantic characterization of models and annotations. The database was implemented using a three-tier architecture utilizing MySQL, JBoss and Dcm4chee, in compliance with the DICOM standard to provide compatibility with existing clinical networks and devices. Parts of Dcm4chee were extended to access image specific attributes as search parameters. To date, approximately 3000 de-identified cardiac imaging examinations are available in the database. All software components developed by the CAP are open source and are freely available under the Mozilla Public License Version 1.1 (http://www.mozilla.org/MPL/MPL-1.1.txt)

    Towards a Reference Architecture with Modular Design for Large-scale Genotyping and Phenotyping Data Analysis: A Case Study with Image Data

    Get PDF
    With the rapid advancement of computing technologies, various scientific research communities have been extensively using cloud-based software tools or applications. Cloud-based applications allow users to access software applications from web browsers while relieving them from the installation of any software applications in their desktop environment. For example, Galaxy, GenAP, and iPlant Colaborative are popular cloud-based systems for scientific workflow analysis in the domain of plant Genotyping and Phenotyping. These systems are being used for conducting research, devising new techniques, and sharing the computer assisted analysis results among collaborators. Researchers need to integrate their new workflows/pipelines, tools or techniques with the base system over time. Moreover, large scale data need to be processed within the time-line for more effective analysis. Recently, Big Data technologies are emerging for facilitating large scale data processing with commodity hardware. Among the above-mentioned systems, GenAp is utilizing the Big Data technologies for specific cases only. The structure of such a cloud-based system is highly variable and complex in nature. Software architects and developers need to consider totally different properties and challenges during the development and maintenance phases compared to the traditional business/service oriented systems. Recent studies report that software engineers and data engineers confront challenges to develop analytic tools for supporting large scale and heterogeneous data analysis. Unfortunately, less focus has been given by the software researchers to devise a well-defined methodology and frameworks for flexible design of a cloud system for the Genotyping and Phenotyping domain. To that end, more effective design methodologies and frameworks are an urgent need for cloud based Genotyping and Phenotyping analysis system development that also supports large scale data processing. In our thesis, we conduct a few studies in order to devise a stable reference architecture and modularity model for the software developers and data engineers in the domain of Genotyping and Phenotyping. In the first study, we analyze the architectural changes of existing candidate systems to find out the stability issues. Then, we extract architectural patterns of the candidate systems and propose a conceptual reference architectural model. Finally, we present a case study on the modularity of computation-intensive tasks as an extension of the data-centric development. We show that the data-centric modularity model is at the core of the flexible development of a Genotyping and Phenotyping analysis system. Our proposed model and case study with thousands of images provide a useful knowledge-base for software researchers, developers, and data engineers for cloud based Genotyping and Phenotyping analysis system development

    Prediction of mono- and di-nucleotide-specific DNA-binding sites in proteins using neural networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA recognition by proteins is one of the most important processes in living systems. Therefore, understanding the recognition process in general, and identifying mutual recognition sites in proteins and DNA in particular, carries great significance. The sequence and structural dependence of DNA-binding sites in proteins has led to the development of successful machine learning methods for their prediction. However, all existing machine learning methods predict DNA-binding sites, irrespective of their target sequence and hence, none of them is helpful in identifying specific protein-DNA contacts. In this work, we formulate the problem of predicting specific DNA-binding sites in terms of contacts between the residue environments of proteins and the identity of a mononucleotide or a dinucleotide step in DNA. The aim of this work is to take a protein sequence or structural features as inputs and predict for each amino acid residue if it binds to DNA at locations identified by one of the four possible mononucleotides or one of the 10 unique dinucleotide steps. Contact predictions are made at various levels of resolution viz. in terms of side chain, backbone and major or minor groove atoms of DNA.</p> <p>Results</p> <p>Significant differences in residue preferences for specific contacts are observed, which combined with other features, lead to promising levels of prediction. In general, PSSM-based predictions, supported by secondary structure and solvent accessibility, achieve a good predictability of ~70–80%, measured by the area under the curve (AUC) of ROC graphs. The major and minor groove contact predictions stood out in terms of their poor predictability from sequences or PSSM, which was very strongly (>20 percentage points) compensated by the addition of secondary structure and solvent accessibility information, revealing a predominant role of local protein structure in the major/minor groove DNA-recognition. Following a detailed analysis of results, a web server to predict mononucleotide and dinucleotide-step contacts using PSSM was developed and made available at <url>http://sdcpred.netasa.org/</url> or <url>http://tardis.nibio.go.jp/netasa/sdcpred/</url>.</p> <p>Conclusion</p> <p>Most residue-nucleotide contacts can be predicted with high accuracy using only sequence and evolutionary information. Major and minor groove contacts, however, depend profoundly on the local structure. Overall, this study takes us a step closer to the ultimate goal of predicting mutual recognition sites in protein and DNA sequences.</p

    Genome-forward oncology: how do we get there?

    Get PDF
    • …
    corecore