89 research outputs found

    Field programmable gate array implementation of multiwavelet transform based orthogonal frequency division multiplexing system

    Get PDF
    This article offers an efficient design and implementation of a discrete multiwavelet critical-sampling transform based orthogonal frequency division multiplexing (DMWCST-OFDM) transceiver using field programmable gate array (FPGA) platform. The design uses 16-point discrete multiwavelet critical-sampling transform (DMWCST) and its inverse as main processing modules. All modules were designed using a part of Vivado® Design Suite version (2015.2), which is Xilinx system generator (XSG), and is compatible with MATLAB Simulink version R2013b. The FPGA implementation is carried out on a Zynq (XC7Z020-1CLG484) evaluation board with joint test action group (JTAG) hardware co-simulation. According to the results obtained from the implementation tools, the implemented system is efficient in terms of resource utilization and could support the real-time operations

    Engineering Education and Research Using MATLAB

    Get PDF
    MATLAB is a software package used primarily in the field of engineering for signal processing, numerical data analysis, modeling, programming, simulation, and computer graphic visualization. In the last few years, it has become widely accepted as an efficient tool, and, therefore, its use has significantly increased in scientific communities and academic institutions. This book consists of 20 chapters presenting research works using MATLAB tools. Chapters include techniques for programming and developing Graphical User Interfaces (GUIs), dynamic systems, electric machines, signal and image processing, power electronics, mixed signal circuits, genetic programming, digital watermarking, control systems, time-series regression modeling, and artificial neural networks

    Progressive transmission of medical images

    Get PDF
    A novel adaptive source-channel coding scheme for progressive transmission of medical images with a feedback system is therefore proposed in this dissertation. The overall design includes Discrete Wavelet Transform (DWT), Embedded Zerotree Wavelet (EZW) coding, Joint Source-Channel Coding (JSCC), prioritization of region of interest (RoI), variability of parity length based on feedback, and the corresponding hardware design utilising Simulink. The JSCC can achieve an efficient transmission by incorporating unequal error projection (UEP) and rate allocation. An algorithm is also developed to estimate the number of erroneous data in the receiver. The algorithm detects the address in which the number of symbols for each subblock is indicated, and reassigns an estimated correct data according to a decision making criterion, if error data is detected. The proposed system has been designed based on Simulink which can be used to generate netlist for portable devices. A new compression method called Compressive Sensing (CS) is also revisited in this work. CS exhibits many advantages in comparison with EZW based on our experimental results. DICOM JPEG2000 is an efficient coding standard for lossy or lossless multi-component image coding. However, it does not provide any mechanism for automatic RoI definition, and is more complex compared to our proposed scheme. The proposed system significantly reduces the transmission time, lowers computation cost, and maintains an error-free state in the RoI with regards to the above provided features. A MATLAB-based TCP/IP connection is established to demonstrate the efficacy of the proposed interactive and adaptive progressive transmission system. The proposed system is simulated for both binary and symmetric channel (BSC) and Rayleigh channel. The experimental results confirm the effectiveness of the design.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Progressive transmission of medical images

    Get PDF
    A novel adaptive source-channel coding scheme for progressive transmission of medical images with a feedback system is therefore proposed in this dissertation. The overall design includes Discrete Wavelet Transform (DWT), Embedded Zerotree Wavelet (EZW) coding, Joint Source-Channel Coding (JSCC), prioritization of region of interest (RoI), variability of parity length based on feedback, and the corresponding hardware design utilising Simulink. The JSCC can achieve an efficient transmission by incorporating unequal error projection (UEP) and rate allocation. An algorithm is also developed to estimate the number of erroneous data in the receiver. The algorithm detects the address in which the number of symbols for each subblock is indicated, and reassigns an estimated correct data according to a decision making criterion, if error data is detected. The proposed system has been designed based on Simulink which can be used to generate netlist for portable devices. A new compression method called Compressive Sensing (CS) is also revisited in this work. CS exhibits many advantages in comparison with EZW based on our experimental results. DICOM JPEG2000 is an efficient coding standard for lossy or lossless multi-component image coding. However, it does not provide any mechanism for automatic RoI definition, and is more complex compared to our proposed scheme. The proposed system significantly reduces the transmission time, lowers computation cost, and maintains an error-free state in the RoI with regards to the above provided features. A MATLAB-based TCP/IP connection is established to demonstrate the efficacy of the proposed interactive and adaptive progressive transmission system. The proposed system is simulated for both binary and symmetric channel (BSC) and Rayleigh channel. The experimental results confirm the effectiveness of the desig

    FlexWAFE - eine Architektur für rekonfigurierbare-Bildverarbeitungssysteme

    Get PDF
    Recently there has been an increase in demand for high-resolution digital media content in both cinema and television industries. Currently existing equipment does not meet the requirements, or is too costly. New hardware systems and new programming techniques are needed in order to meet the high-resolution, high-quality, image requirements and reduce costs. The industry seeks a flexible architecture capable of running multiple applications on top of standard off-the-shelf components, with reduced development time. Until now, standard practice has been to develop specialized architectures and systems that target a single application. This has little flexibility and leads to high developments costs, every new application is designed almost from scratch. Our focus was to develop an architecture that is suited to image stream processing and has the flexibility to run multiple applications using the same FPGA-based hardware platform. The novelty in our approach is that we reconfigure parts of the architecture at run-time, but without incurring in the time and added constraints penalty of FPGA-partial-reconfiguration techniques. The architecture uses a hierarchical control structure that is well suited to parallel processing, and allows single cycle latency reconfiguration of parts of the processing pipeline. This is achieved using relatively little resources for the distributed control structures. To test the developed architecture a complex film-grain noise reduction algorithm was implemented on an off-the-shelf hardware platform developed by Thomson-Grass Valley. The system meet all the requirements and had very little load on the hierarchical control structures, there is growth headroom for much complexer control demands. The architecture has been ported to other hardware platforms, and other applications have been implemented as well. The run-time reconfigurability has proven to be a key factor in the success of the FlexWAFE.Kürzlich gab es eine Zunahme der Nachfrage nach hochauflösenden digitalen Medieninhalten in den Kino- und Fernsehenindustrien. Derzeit vorhandene Systeme entsprechen nicht den Anforderungen, oder sind zu teuer. Neue Hardware-Systeme und neuer Programmiertechniken sind erforderlich, um den hochauflösenden, hochwertigen, Bildanforderungen zu genügen und Kosten zu verringern. Die Industrie sucht eine flexible Architektur zur Ausführung mehrerer Anwendungen auf Standard-Komponenten, mit reduzierten Entwicklungszeiten. Bis jetzt ist gängige Praxis, spezialisierten Architektur und Systeme zu entwickeln, die eine einzelne Anwendung zielen. Dieses hat wenig Flexibilität und führt zu hohe Entwicklungskosten, jede neue Anwendung ist fast von Grund auf neu konzipiert. Unser Fokus war es, eine für Bild Verarbeitung geeignet Architektur zu entwickeln dass die Flexibilität hat mehrere Anwendungen an dieselbe FPGA-basierte Hardware-Plattform zu laufen. Die Neuheit in unserem Ansatz ist, dass wir Teile der Architektur zur Laufzeit rekonfigurieren, aber, ohne das Zeit und constraints strafe von FPGA Partielle-Rekonfiguration-Techniken. Die Architektur verwendet eine hierarchische Kontrollstruktur, die zur parallel Verarbeitung gut geeignet ist, und Single-Cycle-Latenz Rekonfiguration von Teilen der Verarbeitungs-Pipeline ermöglicht. Dieses wird unter Verwendung relativ weniger Ressourcen für die verteiltes Steuerung Strukturen erzielt. Um das entwickelte Architektur zu testen ein komplexer Film-Korn-Rauschunterdrückung Algorithmus wurde auf einer von Thomson-Grass Valley entwickelt standard Hardware-Plattform umgesetzt. Das System erfüllt alle Anforderungen und hatte sehr wenig Last auf den hierarchischen Kontrollstrukturen, es gibt viel Wachstum Spielraum für viel kompliziertere Steuerunganforderungen. Die Architektur ist zu anderen Hardwareplattformen portiert worden, und andere Anwendungen wurden ebenfalls implementiert. Der Laufzeitreconfigurability ist ein Schlüsselfaktor im Erfolg des FlexWAFE gewesen

    A Dynamically Reconfigurable Parallel Processing Framework with Application to High-Performance Video Processing

    Get PDF
    Digital video processing demands have and will continue to grow at unprecedented rates. Growth comes from ever increasing volume of data, demand for higher resolution, higher frame rates, and the need for high capacity communications. Moreover, economic realities force continued reductions in size, weight and power requirements. The ever-changing needs and complexities associated with effective video processing systems leads to the consideration of dynamically reconfigurable systems. The goal of this dissertation research was to develop and demonstrate the viability of integrated parallel processing system that effectively and efficiently apply pre-optimized hardware cores for processing video streamed data. Digital video is decomposed into packets which are then distributed over a group of parallel video processing cores. Real time processing requires an effective task scheduler that distributes video packets efficiently to any of the reconfigurable distributed processing nodes across the framework, with the nodes running on FPGA reconfigurable logic in an inherently Virtual\u27 mode. The developed framework, coupled with the use of hardware techniques for dynamic processing optimization achieves an optimal cost/power/performance realization for video processing applications. The system is evaluated by testing processor utilization relative to I/O bandwidth and algorithm latency using a separable 2-D FIR filtering system, and a dynamic pixel processor. For these applications, the system can achieve performance of hundreds of 640x480 video frames per second across an eight lane Gen I PCIe bus. Overall, optimal performance is achieved in the sense that video data is processed at the maximum possible rate that can be streamed through the processing cores. This performance, coupled with inherent ability to dynamically add new algorithms to the described dynamically reconfigurable distributed processing framework, creates new opportunities for realizable and economic hardware virtualization.\u2

    Wavelet Theory

    Get PDF
    The wavelet is a powerful mathematical tool that plays an important role in science and technology. This book looks at some of the most creative and popular applications of wavelets including biomedical signal processing, image processing, communication signal processing, Internet of Things (IoT), acoustical signal processing, financial market data analysis, energy and power management, and COVID-19 pandemic measurements and calculations. The editor’s personal interest is the application of wavelet transform to identify time domain changes on signals and corresponding frequency components and in improving power amplifier behavior
    corecore