121 research outputs found

    Using formal logic to represent sign language phonetics in semi-automatic annotation tasks

    Get PDF
    This thesis presents a formal framework for the representation of Signed Languages (SLs), the languages of Deaf communities, in semi-automatic recognition tasks. SLs are complex visio-gestural communication systems; by using corporal gestures, signers achieve the same level of expressivity held by sound-based languages like English or French. However, unlike these, SL morphemes correspond to complex sequences of highly specific body postures, interleaved with postural changes: during signing, signers use several parts of their body simultaneously in order to combinatorially build phonemes. This situation, paired with an extensive use of the three-dimensional space, make them difficult to represent with tools already existent in Natural Language Processing (NLP) of vocal languages. For this reason, the current work presents the development of a formal representation framework, intended to transform SL video repositories (corpus) into an intermediate representation layer, where automatic recognition algorithms can work under better conditions. The main idea is that corpora can be described with a specialized Labeled Transition System (LTS), which can then be annotated with logic formulae for its study. A multi-modal logic was chosen as the basis of the formal language: the Propositional Dynamic Logic (PDL). This logic was originally created to specify and prove properties on computer programs. In particular, PDL uses the modal operators [a] and to denote necessity and possibility, respectively. For SLs, a particular variant based on the original formalism was developed: the PDL for Sign Language (PDLSL). With the PDLSL, body articulators (like the hands or head) are interpreted as independent agents; each articulator has its own set of valid actions and propositions, and executes them without influence from the others. The simultaneous execution of different actions by several articulators yield distinct situations, which can be searched over an LTS with formulae, by using the semantic rules of the logic. Together, the use of PDLSL and the proposed specialized data structures could help curb some of the current problems in SL study; notably the heterogeneity of corpora and the lack of automatic annotation aids. On the same vein, this may not only increase the size of the available datasets, but even extend previous results to new corpora; the framework inserts an intermediate representation layer which can serve to model any corpus, regardless of its technical limitations. With this, annotations is possible by defining with formulae the characteristics to annotate. Afterwards, a formal verification algorithm may be able to find those features in corpora, as long as they are represented as consistent LTSs. Finally, the development of the formal framework led to the creation of a semi-automatic annotator based on the presented theoretical principles. Broadly, the system receives an untreated corpus video, converts it automatically into a valid LTS (by way of some predefined rules), and then verifies human-created PDLSL formulae over the LTS. The final product, is an automatically generated sub-lexical annotation, which can be later corrected by human annotators for their use in other areas such as linguistics.Cette thèse présente le développement d'un framework formel pour la représentation des Langues de Signes (LS), les langages des communautés Sourdes, dans le cadre de la construction d'un système de reconnaissance automatique. Les LS sont de langues naturelles, qui utilisent des gestes et l'espace autour du signeur pour transmettre de l'information. Cela veut dire que, à différence des langues vocales, les morphèmes en LS ne correspondent pas aux séquences de sons; ils correspondent aux séquences de postures corporelles très spécifiques, séparés par des changements tels que de mouvements. De plus, lors du discours les signeurs utilisent plusieurs parties de leurs corps (articulateurs) simultanément, ce qui est difficile à capturer avec un système de notation écrite. Cette situation difficulté leur représentation dans de taches de Traitement Automatique du Langage Naturel (TALN). Pour ces raisons, le travail présenté dans ce document a comme objectif la construction d'une représentation abstraite de la LS; plus précisément, le but est de pouvoir représenter des collections de vidéo LS (corpus) de manière formelle. En générale, il s'agit de construire une couche de représentation intermédiaire, permettant de faire de la reconnaissance automatique indépendamment des technologies de suivi et des corpus utilisés pour la recherche. Cette couche corresponde à un système de transition d'états (STE), spécialement crée pour représenter la nature parallèle des LS. En plus, elle peut-être annoté avec de formules logiques pour son analyse, à travers de la vérification de modèles. Pour représenter les propriétés à vérifier, une logique multi-modale a été choisi : la Logique Propositionnelle Dynamique (PDL). Cette logique a été originalement crée pour la spécification de programmes. De manière plus précise, PDL permit d'utilise des opérateurs modales comme [a] et , représentant > et >, respectivement. Une variante particulaire a été développée pour les LS : la PDL pour Langue de Signes (PDLSL), qui est interprété sur des STE représentant des corpus. Avec PDLSL, chaque articulateur du corps (comme les mains et la tête) est vu comme un agent indépendant; cela veut dire que chacun a ses propres actions et propositions possibles, et qu'il peux les exécuter pour influencer une posture gestuelle. L'utilisation du framework proposé peut aider à diminuer deux problèmes importantes qui existent dans l'étude linguistique des LS : hétérogénéité des corpus et la manque des systèmes automatiques d'aide à l'annotation. De ce fait, un chercheur peut rendre exploitables des corpus existants en les transformant vers des STE. Finalement, la création de cet outil à permit l'implémentation d'un système d'annotation semi-automatique, basé sur les principes théoriques du formalisme. Globalement, le système reçoit des vidéos LS et les transforme dans un STE valide. Ensuite, un module fait de la vérification formelle sur le STE, en utilisant une base de données de formules crée par un expert en LS. Les formules représentent des propriétés lexicales à chercher dans le STE. Le produit de ce processus, est une annotation qui peut être corrigé par des utilisateurs humains, et qui est utilisable dans des domaines d'études tels que la linguistique

    Architecture and the Built Environment:

    Get PDF
    This publication provides an overview of TU Delft’s most significant research achievements in the field of architecture and the built environment during the years 2010–2012. It is the first presentation of the joint research portfolio of the Faculty of Architecture and OTB Research Institute since their integration into the Faculty of Architecture and the Built Environment. As such the portfolio holds a strong promise for the future. In a time when the economy seems to be finally picking up and in which such societal issues as energy, climate and ageing are more prominent than ever before, there are plenty of fields for us to explore in the next three years

    Integrating geographic information systems with the Level 3 Probabilistic Risk Assessment of nuclear power plants to advance modeling of socio-technical infrastructure in emergency response applications

    Get PDF
    Explicit incorporation of social and organizational factors into Level 1 Probabilistic Risk Assessment (PRA) has been theoretically and methodologically improved and now is in the process of development for Nuclear Power Plant (NPPs) applications. The goal of this study is to initiate the same paradigm of research for Level 3 PRA. Explicit incorporation of social factors, most specifically location-specific social factors into Level 3 PRA, can drastically affect decisions related to emergency planning, preparedness, and response (EPPR). With concerns about population response from a radiological accident such as the one that occurred at the Fukushima Daiichi Nuclear Power Plant in 2011, understanding the implications of the social makeup of the population in the vicinity of an NPP has the potential to give decision makers information about the effects of their decisions. This research proposes theoretical and methodological approaches to explicitly consider the social factors of the local population in NPP accident consequence modeling. In a Level 3 PRA, the MELCOR Accident Consequence Code System (MACCS2) developed by Sandia National Laboratory, is used by the U.S. Nuclear Regulatory Commission and nuclear industry in order to estimate the damages to public health and environment in the case of an NPP severe accident leading to a large radiological release into the atmosphere. The goal for this research is to derive and incorporate location-specific human and organizational factors, socio-political/ socio-economic climate, and community-specific characteristics into a Level 3 PRA. This has been done “externally” by the integration of MACCS2 with Geographic Information Systems (GIS). Esri’s ArcGIS Version 10.2 software is utilized to operationalize this study. A Bayesian Belief Network (BBN) methodology is also proposed as an approach to “internally” incorporate social risk-contributing factors into a Level 3 PRA code. In this research, social vulnerability construct is used, as a surrogate for a causal model, to integrate social factors with a Level 3 PRA. There have been over five decades of research dedicated to the development of quantifiable social vulnerability factors and models that point toward a prediction of consequences to a population, given a specific hazard. Most of these studies have been concentrated on natural hazards; yet, none have been applied to the man-made hazard (i.e., radiation) related to NPPs. This research study combines social and technical contextual factors with radiation and contamination hazard characteristics based on a specific NPP in order to advance risk assessment and management for NPP severe accidents. Specific demographic information is integrated into social vulnerability and includes house value, age, minority status, and gender. This social vulnerability is associated with the population’s ability to evacuate the area, namely to define evacuation delay time and evacuation speed within the population evacuation model. This research spans two very diverse areas of study; (1) Probabilistic Risk Assessment (PRA) as originated in nuclear engineering, and (2) social vulnerability analysis which is primarily conducted in geography and the social sciences. The contributions of this research include: 1. Theoretical contributions to support applying social vulnerability frameworks to NPP accident consequence analysis, covered in chapter 2. This research is the first of its kind to bridge the gap between social vulnerability theories and nuclear power risk analysis, and consists of a thorough literature review spanning many diverse areas of research 2. Methodological contributions toward combining an accident consequence code such as MACCS2 with the quantification of social vulnerability in the form of a social vulnerability index, covered in chapter 3. This methodology has been established in natural hazards research, and never in the context of probabilistic nuclear accident consequence codes. 3. Methodological contributions toward the integration of an accident consequence code such as MACCS2 with Geographic Information Systems (GIS) to visualize risk information and to explicitly and externally integrate social factors with MACCS2. This has been demonstrated in chapters 3 and 4. 4. Methodological contributions to explicitly and internally merge social vulnerability indices with the evacuation module in MACCS2, using Bayesian Belief Network (BBN). This has been explained in chapter 5. 5. Practical contributions including explicit consideration of location-specific social factors in Level 3 PRA that will help develop: (i) more realistic modeling of population response and, therefore, a more accurate estimation of NPP severe accident risk; and (ii) more advanced management of NPPs severe accident risk by facilitating the analysis of the effects of change in risk due to changes in the underlying socio-technical risk contributing factors. This will certainly help advance models and applications of risk-informed EPPR, particularly in focusing on location-specific populations who rank highest with respect to risk. A further contribution is to visualize location-specific radiological risk around a NPP in order to improve risk communication with the public and policy makers

    Mathematics in Software Reliability and Quality Assurance

    Get PDF
    This monograph concerns the mathematical aspects of software reliability and quality assurance and consists of 11 technical papers in this emerging area. Included are the latest research results related to formal methods and design, automatic software testing, software verification and validation, coalgebra theory, automata theory, hybrid system and software reliability modeling and assessment

    Human-forest relationship in Finland

    Get PDF
    Our relationship with the forest can be defined as human-forest relationship (HFR). It is the result of our individual history, family history, cultural background, the society in which we live, and the forest surrounding us. This relationship, which combines both historical and modern values and practices, reflects the constantly evolving global, national, communal and individual attitudes towards forests. The aim of this article is to first, define the concept of HFR and second, to demonstrate how HFR has been, and continues to be integrated into Finnish society and culture. Finally, we will gather some ongoing societal discussion on changes in HFR. The Finnish National Inventory of Living Heritage, established in 2017 included HFR as one of its elements. In March 2018, according to a published survey, 83 per cent of Finns appraised forests either quite or very important for themselves. These results beckoned the question of what is their HFR. Do ageing private forest owners share similar HFR with city dwellers of generation Y? Despite the admitted importance of forests, it seems that the essence of the HFR is evolving and Finns are adapting various HFRs in accordance with the fading traditional economic importance of forests as new values are arising.Peer reviewe
    corecore