49 research outputs found

    Agnostically Learning Boolean Functions with Finite Polynomial Representation

    Get PDF
    Agnostic learning is an extremely hard task in computational learning theory. In this paper we revisit the results in [Kalai et al. SIAM J. Comput. 2008] on agnostically learning boolean functions with finite polynomial representation and those that can be approximated by the former. An example of the former is the class of all boolean low-degree polynomials. For the former, [Kalai et al. SIAM J. Comput. 2008] introduces the l_1-polynomial regression method to learn them to error opt+epsilon. We present a simple instantiation for one step in the method and accordingly give the analysis. Moreover, we show that even ignoring this step can bring a learning result of error 2opt+epsilon as well. Then we consider applying the result for learning concept classes that can be approximated by the former to learn richer specific classes. Our result is that the class of s-term DNF formulae can be agnostically learned to error opt+epsilon with respect to arbitrary distributions for any epsilon in time poly(n^d, 1/epsilon), where d=O(sqrt{n}cdot scdot log slog^2(1/epsilon))

    Nonparametric Statistical Inference with an Emphasis on Information-Theoretic Methods

    Get PDF
    This book addresses contemporary statistical inference issues when no or minimal assumptions on the nature of studied phenomenon are imposed. Information theory methods play an important role in such scenarios. The approaches discussed include various high-dimensional regression problems, time series and dependence analyses

    SVM-Based Negative Data Mining to Binary Classification

    Get PDF
    The properties of training data set such as size, distribution and the number of attributes significantly contribute to the generalization error of a learning machine. A not well-distributed data set is prone to lead to a partial overfitting model. Two approaches proposed in this dissertation for the binary classification enhance useful data information by mining negative data. First, an error driven compensating hypothesis approach is based on Support Vector Machines (SVMs) with (1+k)-iteration learning, where the base learning hypothesis is iteratively compensated k times. This approach produces a new hypothesis on the new data set in which each label is a transformation of the label from the negative data set, further producing the positive and negative child data subsets in subsequent iterations. This procedure refines the base hypothesis by the k child hypotheses created in k iterations. A prediction method is also proposed to trace the relationship between negative subsets and testing data set by a vector similarity technique. Second, a statistical negative example learning approach based on theoretical analysis improves the performance of the base learning algorithm learner by creating one or two additional hypotheses audit and booster to mine the negative examples output from the learner. The learner employs a regular Support Vector Machine to classify main examples and recognize which examples are negative. The audit works on the negative training data created by learner to predict whether an instance is negative. However, the boosting learning booster is applied when audit does not have enough accuracy to judge learner correctly. Booster works on training data subsets with which learner and audit do not agree. The classifier for testing is the combination of learner, audit and booster. The classifier for testing a specific instance returns the learner\u27s result if audit acknowledges learner\u27s result or learner agrees with audit\u27s judgment, otherwise returns the booster\u27s result. The error of the classifier is decreased to O(e^2) comparing to the error O(e) of a base learning algorithm

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Training Fully Connected Neural Networks is ∃R\exists\mathbb{R}-Complete

    Full text link
    We consider the algorithmic problem of finding the optimal weights and biases for a two-layer fully connected neural network to fit a given set of data points. This problem is known as empirical risk minimization in the machine learning community. We show that the problem is ∃R\exists\mathbb{R}-complete. This complexity class can be defined as the set of algorithmic problems that are polynomial-time equivalent to finding real roots of a polynomial with integer coefficients. Our results hold even if the following restrictions are all added simultaneously. ∙\bullet There are exactly two output neurons. ∙\bullet There are exactly two input neurons. ∙\bullet The data has only 13 different labels. ∙\bullet The number of hidden neurons is a constant fraction of the number of data points. ∙\bullet The target training error is zero. ∙\bullet The ReLU activation function is used. This shows that even very simple networks are difficult to train. The result offers an explanation (though far from a complete understanding) on why only gradient descent is widely successful in training neural networks in practice. We generalize a recent result by Abrahamsen, Kleist and Miltzow [NeurIPS 2021]. This result falls into a recent line of research that tries to unveil that a series of central algorithmic problems from widely different areas of computer science and mathematics are ∃R\exists\mathbb{R}-complete: This includes the art gallery problem [JACM/STOC 2018], geometric packing [FOCS 2020], covering polygons with convex polygons [FOCS 2021], and continuous constraint satisfaction problems [FOCS 2021].Comment: 38 pages, 18 figure

    Bayesian Gaussian Process Models: PAC-Bayesian Generalisation Error Bounds and Sparse Approximations

    Get PDF
    Non-parametric models and techniques enjoy a growing popularity in the field of machine learning, and among these Bayesian inference for Gaussian process (GP) models has recently received significant attention. We feel that GP priors should be part of the standard toolbox for constructing models relevant to machine learning in the same way as parametric linear models are, and the results in this thesis help to remove some obstacles on the way towards this goal. In the first main chapter, we provide a distribution-free finite sample bound on the difference between generalisation and empirical (training) error for GP classification methods. While the general theorem (the PAC-Bayesian bound) is not new, we give a much simplified and somewhat generalised derivation and point out the underlying core technique (convex duality) explicitly. Furthermore, the application to GP models is novel (to our knowledge). A central feature of this bound is that its quality depends crucially on task knowledge being encoded faithfully in the model and prior distributions, so there is a mutual benefit between a sharp theoretical guarantee and empirically well-established statistical practices. Extensive simulations on real-world classification tasks indicate an impressive tightness of the bound, in spite of the fact that many previous bounds for related kernel machines fail to give non-trivial guarantees in this practically relevant regime. In the second main chapter, sparse approximations are developed to address the problem of the unfavourable scaling of most GP techniques with large training sets. Due to its high importance in practice, this problem has received a lot of attention recently. We demonstrate the tractability and usefulness of simple greedy forward selection with information-theoretic criteria previously used in active learning (or sequential design) and develop generic schemes for automatic model selection with many (hyper)parameters. We suggest two new generic schemes and evaluate some of their variants on large real-world classification and regression tasks. These schemes and their underlying principles (which are clearly stated and analysed) can be applied to obtain sparse approximations for a wide regime of GP models far beyond the special cases we studied here

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore