149 research outputs found

    Spectral methods for CFD

    Get PDF
    One of the objectives of these notes is to provide a basic introduction to spectral methods with a particular emphasis on applications to computational fluid dynamics. Another objective is to summarize some of the most important developments in spectral methods in the last two years. The fundamentals of spectral methods for simple problems will be covered in depth, and the essential elements of several fluid dynamical applications will be sketched

    Analysis of Iterative Methods for the Steady and Unsteady Stokes Problem: Application to Spectral Element Discretizations

    Get PDF
    A new and detailed analysis of the basic Uzawa algorithm for decoupling of the pressure and the velocity in the steady and unsteady Stokes operator is presented. The paper focuses on the following new aspects: explicit construction of the Uzawa pressure-operator spectrum for a semiperiodic model problem; general relationship of the convergence rate of the Uzawa procedure to classical inf-sup discretization analysis; and application of the method to high-order variational discretization

    Nonconforming mortar element methods: Application to spectral discretizations

    Get PDF
    Spectral element methods are p-type weighted residual techniques for partial differential equations that combine the generality of finite element methods with the accuracy of spectral methods. Presented here is a new nonconforming discretization which greatly improves the flexibility of the spectral element approach as regards automatic mesh generation and non-propagating local mesh refinement. The method is based on the introduction of an auxiliary mortar trace space, and constitutes a new approach to discretization-driven domain decomposition characterized by a clean decoupling of the local, structure-preserving residual evaluations and the transmission of boundary and continuity conditions. The flexibility of the mortar method is illustrated by several nonconforming adaptive Navier-Stokes calculations in complex geometry

    Fractional step like schemes for free surface problems with thermal coupling using the Lagrangian PFEM

    Get PDF
    The method presented in Aubry et al. (Comput Struc 83:1459–1475, 2005) for the solution of an incompressible viscous fluid flow with heat transfer using a fully Lagrangian description of motion is extended to three dimensions (3D) with particular emphasis on mass conservation. A modified fractional step (FS) based on the pressure Schur complement (Turek 1999), and related to the class of algebraic splittings Quarteroni et al. (Comput Methods Appl Mech Eng 188:505–526, 2000), is used and a new advantage of the splittings of the equations compared with the classical FS is highlighted for free surface problems. The temperature is semi-coupled with the displacement, which is the main variable in a Lagrangian description. Comparisons for various mesh Reynolds numbers are performed with the classical FS, an algebraic splitting and a monolithic solution, in order to illustrate the behaviour of the Uzawa operator and the mass conservation. As the classical fractional step is equivalent to one iteration of the Uzawa algorithm performed with a standard Laplacian as a preconditioner, it will behave well only in a Reynold mesh number domain where the preconditioner is efficient. Numerical results are provided to assess the superiority of the modified algebraic splitting to the classical FS

    Incompressible Lagrangian fluid flow with thermal coupling

    Get PDF
    In this monograph is presented a method for the solution of an incompressible viscous fluid flow with heat transfer and solidification usin a fully Lagrangian description on the motion. The originality of this method consists in assembling various concepts and techniques which appear naturally due to the Lagrangian formulation.Postprint (published version

    Spectral element methods: Algorithms and architectures

    Get PDF
    Spectral element methods are high-order weighted residual techniques for partial differential equations that combine the geometric flexibility of finite element methods with the rapid convergence of spectral techniques. Spectral element methods are described for the simulation of incompressible fluid flows, with special emphasis on implementation of spectral element techniques on medium-grained parallel processors. Two parallel architectures are considered: the first, a commercially available message-passing hypercube system; the second, a developmental reconfigurable architecture based on Geometry-Defining Processors. High parallel efficiency is obtained in hypercube spectral element computations, indicating that load balancing and communication issues can be successfully addressed by a high-order technique/medium-grained processor algorithm-architecture coupling

    Numerical solution of saddle point problems

    Full text link

    Stabilized Finite Element Methods vs LES modelling for fluid-strucure interaction with anisotropic adaptive meshing

    No full text
    National audienceThis paper presents a stabilised finite element method for the solution of incompressible multiphase flow problems in three dimensions using an immersed volume method with anisotropic adaptive meshing. A recently developed stabilised finite element solver which draws upon features of solving general fluid-structure interactions is presented. The proposed method is developed in the context of the monolithic formulation. Such strategy gives rise to an extra stress tensor in the Navier-Stokes equations coming from the presence of the structure in the fluid. The distinctive feature of the Variational MultiScale approach is not only the decomposition for both the velocity and the pressure fields into coarse/resolved scales and fine/unresolved scales but also the possible efficient enrichment of the extra constraint. This choice of decomposition is shown to be favorable for simulating multiphase flows at high Reynolds number. We assess the behaviour and accuracy of the proposed formulation coupled to the levelset method approximation in the simulation of 2D and 3D time-dependent numerical examples such as : vortex shedding behind an obstacle, conjugate heat transfer inside industrial furnaces and the rigid bodies motion in incompressible flows.See http://hal.archives-ouvertes.fr/docs/00/59/26/96/ANNEX/r_Q1R43125.pd
    • …
    corecore