452 research outputs found

    Situational Awareness Enhancement for Connected and Automated Vehicle Systems

    Get PDF
    Recent developments in the area of Connected and Automated Vehicles (CAVs) have boosted the interest in Intelligent Transportation Systems (ITSs). While ITS is intended to resolve and mitigate serious traffic issues such as passenger and pedestrian fatalities, accidents, and traffic congestion; these goals are only achievable by vehicles that are fully aware of their situation and surroundings in real-time. Therefore, connected and automated vehicle systems heavily rely on communication technologies to create a real-time map of their surrounding environment and extend their range of situational awareness. In this dissertation, we propose novel approaches to enhance situational awareness, its applications, and effective sharing of information among vehicles.;The communication technology for CAVs is known as vehicle-to-everything (V2x) communication, in which vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) have been targeted for the first round of deployment based on dedicated short-range communication (DSRC) devices for vehicles and road-side transportation infrastructures. Wireless communication among these entities creates self-organizing networks, known as Vehicular Ad-hoc Networks (VANETs). Due to the mobile, rapidly changing, and intrinsically error-prone nature of VANETs, traditional network architectures are generally unsatisfactory to address VANETs fundamental performance requirements. Therefore, we first investigate imperfections of the vehicular communication channel and propose a new modeling scheme for large-scale and small-scale components of the communication channel in dense vehicular networks. Subsequently, we introduce an innovative method for a joint modeling of the situational awareness and networking components of CAVs in a single framework. Based on these two models, we propose a novel network-aware broadcast protocol for fast broadcasting of information over multiple hops to extend the range of situational awareness. Afterward, motivated by the most common and injury-prone pedestrian crash scenarios, we extend our work by proposing an end-to-end Vehicle-to-Pedestrian (V2P) framework to provide situational awareness and hazard detection for vulnerable road users. Finally, as humans are the most spontaneous and influential entity for transportation systems, we design a learning-based driver behavior model and integrate it into our situational awareness component. Consequently, higher accuracy of situational awareness and overall system performance are achieved by exchange of more useful information

    A RELIABILITY-BASED ROUTING PROTOCOL FOR VEHICULAR AD-HOC NETWORKS

    Get PDF
    Vehicular Ad hoc NETworks (VANETs), an emerging technology, would allow vehicles to form a self-organized network without the aid of a permanent infrastructure. As a prerequisite to communication in VANETs, an efficient route between communicating nodes in the network must be established, and the routing protocol must adapt to the rapidly changing topology of vehicles in motion. This is one of the goals of VANET routing protocols. In this thesis, we present an efficient routing protocol for VANETs, called the Reliable Inter-VEhicular Routing (RIVER) protocol. RIVER utilizes an undirected graph that represents the surrounding street layout where the vertices of the graph are points at which streets curve or intersect, and the graph edges represent the street segments between those vertices. Unlike existing protocols, RIVER performs real-time, active traffic monitoring and uses this data and other data gathered through passive mechanisms to assign a reliability rating to each street edge. The protocol then uses these reliability ratings to select the most reliable route. Control messages are used to identify a nodeโ€™s neighbors, determine the reliability of street edges, and to share street edge reliability information with other nodes

    ์ •๋ณด ์ค‘์‹ฌ ๋„คํŠธ์›Œํ‚น์—์„œ์˜ ์ฝ˜ํ…ํŠธ ํƒ์ƒ‰ ๋ฐ ๋ฐ์ดํ„ฐ ์˜คํ”„๋กœ๋”ฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 8. ๊ถŒํƒœ๊ฒฝ.ํ˜„์žฌ์˜ ์ธํ„ฐ๋„ท์€ ์ž์› ๊ณต์œ ๋ฅผ ๋ชฉ์ ์œผ๋กœ ํ˜ธ์ŠคํŠธ๊ฐ„ ํ†ต์‹  ํŒจ๋Ÿฌ๋‹ค์ž„์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ์„ค๊ณ„๋˜์—ˆ์ง€๋งŒ, ์˜ค๋Š˜๋‚  ์ธํ„ฐ๋„ท ์‚ฌ์šฉ ํŒจํ„ด์€ ์ฝ˜ํ…ํŠธ ํš๋“์— ์ง‘์ค‘๋˜์–ด์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ, ๋Œ€๋ถ€๋ถ„์˜ ์ธํ„ฐ๋„ท ํŠธ๋ž˜ํ”ฝ์€ ๋น„๋””์˜ค ์„œ๋น„์Šค๋‚˜ P2P ํŒŒ์ผ ๊ณต์œ ์™€ ๊ฐ™์€ ์ฝ˜ํ…ํŠธ ํš๋“์— ์˜ํ•ด ๋ฐœ์ƒํ•˜๊ณ  ์žˆ๋Š” ์ƒํ™ฉ์ด๋‹ค. ํ•˜์ง€๋งŒ, ํ˜„์žฌ ์ธํ„ฐ๋„ท์˜ ๊ตฌ์กฐ์™€ ์‹ค์ œ ์‚ฌ์šฉ ํŒจํ„ด์˜ ๊ดด๋ฆฌ๋Š” ๋น„ํšจ์œจ์ ์ธ ์ฝ˜ํ…ํŠธ ์ „๋‹ฌ (์˜ˆ, ๋™์ผํ•œ ์ธ๊ธฐ์žˆ๋Š” ์ฝ˜ํ…ํŠธ์— ๋Œ€ํ•œ ์ค‘๋ณต๋œ ์ฝ˜ํ…ํŠธ ์ „์†ก)์„ ์•ผ๊ธฐํ•˜๊ณ  ์žˆ๊ณ , ์ด๋Š” ํŠธ๋ž˜ํ”ฝ ํญ๋ฐœ ๋ฌธ์ œ๋กœ ์ด์–ด์ง€๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์Šˆ๋ฅผ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•ด (i) ์ธํ„ฐ๋„ท ๊ตฌ์กฐ๋ฅผ ์ƒˆ๋กญ๊ฒŒ ์„ค๊ณ„ํ•˜๊ฑฐ๋‚˜ (ii) ๋ฐ์ดํ„ฐ ์˜คํ”„๋กœ๋”ฉ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ๋„คํŠธ์›Œํฌ ํŠธ๋ž˜ํ”ฝ์„ ์ค„์ด๋ ค๋Š” ์‹œ๋„๋“ค์ด ์žˆ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์ •๋ณด ์ค‘์‹ฌ ๋„คํŠธ์›Œํ‚น๊ณผ ์ •๋ณด ์ค‘์‹ฌ์˜ ์ฐจ๋Ÿ‰ ๋„คํŠธ์›Œํฌ๋ผ๋Š” ๋‘๊ฐ€์ง€ ์˜์—ญ์—์„œ์˜ ํŠธ๋ž˜ํ”ฝ ๊ฐ์†Œ ๊ธฐ๋ฒ•์— ๋Œ€ํ•ด ํƒ๊ตฌํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ์ •๋ณด ์ค‘์‹ฌ ๋„คํŠธ์›Œํ‚น์„ ์œ„ํ•œ ํŠธ๋ž˜ํ”ฝ ๊ฐ์†Œ ์ฝ˜ํ…ํŠธ ํƒ์ƒ‰ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ •๋ณด ์ค‘์‹ฌ ๋„คํŠธ์›Œํ‚น์€ ํŠธ๋ž˜ํ”ฝ ํญ๋ฐœ๊ณผ ๊ฐ™์€ ํ˜„์žฌ ์ธํ„ฐ๋„ท์˜ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ์ดˆ๊ธฐ ๋‹จ๊ณ„๋ถ€ํ„ฐ ์ธํ„ฐ๋„ท ๊ตฌ์กฐ๋ฅผ ์ƒˆ๋กญ๊ฒŒ ์„ค๊ณ„ํ•˜์ž๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ •๋ณด ์ค‘์‹ฌ ๋„คํŠธ์›Œํ‚น์€ ๊ฐ€๊นŒ์ด์— ์กด์žฌํ•˜๋Š” ์บ์‹œ๋œ ์ฝ˜ํ…ํŠธ๋ฅผ ์ด์šฉํ•˜๊ฑฐ๋‚˜ ๋™์ผํ•œ ์ฝ˜ํ…ํŠธ ์ „์†ก์— ๋Œ€ํ•œ ์ค‘๋ณต๋œ ์ „์†ก์„ ์ค„์ด๋Š” ๊ฒƒ์„ ํ†ตํ•ด ๋„คํŠธ์›Œํฌ ํŠธ๋ž˜ํ”ฝ ๊ฐ์†Œ์™€ ๊ฐ™์€ ์ด๋“์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ด์ „์˜ ์—ฐ๊ตฌ๋“ค์€ ์ด๋Ÿฌํ•œ ์บ์‹œ๋œ ์ฝ˜ํ…ํŠธ๋ฅผ ์ด์šฉํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐํšŒ์ฃผ์˜์  ์บ์‹œ ์ผ์น˜ ๋ฐฉ์‹์— ์˜์กด์„ ํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ์ฝ˜ํ…ํŠธ ์†Œ์Šค๋กœ ๊ฐ€๋Š” ๊ฒฝ๋กœ์— ์กด์žฌํ•˜๋Š” ์บ์‹œ๋œ ์ฝ˜ํ…ํŠธ๋งŒ ์ด์šฉํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋„คํŠธ์›Œํฌ ๊ณณ๊ณณ์— ์žˆ๋Š” ๋„คํŠธ์›Œํฌ ๋‚ด์žฌ ์ €์žฅ ๊ณต๊ฐ„์„ ์ถฉ๋ถ„ํžˆ ์ด์šฉํ•˜์ง€ ๋ชปํ•˜๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๊ธฐ๋ฒ•์ธ SCAN์€ ๋„คํŠธ์›Œํฌ์— ์‚ฐ์žฌ๋œ ์บ์‹œ๋œ ์ฝ˜ํ…ํŠธ๋ฅผ ๋” ์ž˜ ์ด์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ ๊ฐ€๊นŒ์ด์— ์กด์žฌํ•˜๋Š” ์บ์‹œ๋œ ์ฝ˜ํ…ํŠธ๋ฅผ ํƒ์ƒ‰ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด SCAN์€ ๋ธ”๋ฃธ ํ•„ํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ฃผ๋ณ€ ๋ผ์šฐํ„ฐ๋“ค ์‚ฌ์ด์—์„œ ์บ์‹œ๋œ ์ฝ˜ํ…ํŠธ์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ๊ตํ™˜ํ•œ๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด SCAN์€ ๊ธฐํšŒ์ฃผ์˜์  ์บ์‹œ ์ผ์น˜ ๋ฐฉ์‹์˜ ๊ธฐ๋ฒ•์— ๋น„ํ•ด ํ‰๊ท  ํ™‰ ๊ฑฐ๋ฆฌ, ํŠธ๋ž˜ํ”ฝ ์–‘, ๋งํฌ๊ฐ„ ๋กœ๋“œ ๋ถ„๋ฐฐ์—์„œ ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ์ •๋ณด ์ค‘์‹ฌ์˜ ์ฐจ๋Ÿ‰ ๋„คํŠธ์›Œํฌ๋ฅผ ์œ„ํ•œ ํŠธ๋ž˜ํ”ฝ ์˜คํ”„๋กœ๋”ฉ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋ฌด์„  ํ™˜๊ฒฝ์—์„œ ๊ธ‰์ฆํ•˜๊ณ  ์žˆ๋Š” ๋ชจ๋ฐ”์ผ ํŠธ๋ž˜ํ”ฝ์€ ๋ชจ๋ฐ”์ผ ๋„คํŠธ์›Œํฌ ์ œ๊ณต์ž์—๊ฒŒ ์‹ฌ๊ฐํ•œ ์šฐ๋ ค๊ฐ€ ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํŠธ๋ž˜ํ”ฝ ํญ๋ฐœ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•ด, ํŠธ๋ž˜ํ”ฝ์„ ์…€๋ฃฐ๋Ÿฌ ๋„คํŠธ์›Œํฌ์—์„œ WiFi ํ•ซ์ŠคํŒŸ์ด๋‚˜ ํŽจํ† ์…€๊ณผ ๊ฐ™์€ ๋‹ค๋ฅธ ๋„คํŠธ์›Œํฌ๋กœ ์˜คํ”„๋กœ๋”ฉํ•˜๋ ค๋Š” ์—ฐ๊ตฌ๋“ค์ด ์žˆ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐ์กด์˜ ์‹œ๋„์—์„œ ๋” ๋‚˜์•„๊ฐ€์„œ ๋ฐ์ดํ„ฐ ์˜คํ”„๋กœ๋”ฉ์„ ์œ„ํ•œ ์ฐจ๋Ÿ‰ ๋„คํŠธ์›Œํฌ์˜ ์ž ์žฌ์  ์žฅ์ ์— ์ง‘์ค‘ํ•˜์—ฌ ์ฐจ๋Ÿ‰ ๋„คํŠธ์›Œํฌ๋ฅผ ์ด์šฉํ•œ ๋ฐ์ดํ„ฐ ์˜คํ”„๋กœ๋”ฉ ํ”„๋ ˆ์ž„์›Œํฌ์ธ DOVE๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋ฐ์ดํ„ฐ ์˜คํ”„๋กœ๋”ฉ ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ฐจ๋Ÿ‰ ๋‚ด ๋ฐ์ดํ„ฐ ์„œ๋น„์Šค๋ฅผ ์œ„ํ•ด ํ•„์š”ํ•œ ์…€๋ฃฐ๋Ÿฌ ํŠธ๋ž˜ํ”ฝ์„ ๋น„์šฉ ํšจ๊ณผ๊ฐ€ ๋†’์€ ๋ฐฉ์‹์œผ๋กœ ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. DOVE์—์„œ๋Š” ์˜คํ”„๋กœ๋”ฉ์„ ๋ชฉ์ ์œผ๋กœ ์ฐจ๋Ÿ‰ ์ด๋™ ๊ฒฝ๋กœ๋ฅผ ์ด์šฉํ•˜๊ณ , ๊ฒฝ์ œ์ ์ธ ๋น„์šฉ ์ ˆ๊ฐ์„ ๋ชฉ์ ์œผ๋กœ ์ฐจ๋Ÿ‰์—์„œ ์š”์ฒญ๋˜๋Š” ์ฝ˜ํ…ํŠธ ํŒŒ์ผ๋“ค์€ ์…€๋ฃฐ๋Ÿฌ ๋„คํŠธ์›Œํฌ ๋Œ€์‹  ์ฐจ๋Ÿ‰ ๋„คํŠธ์›Œํฌ๋ฅผ ํ†ตํ•ด ์ „๋‹ฌ๋œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์˜คํ”„๋กœ๋”ฉ ์œ„์น˜๋ฅผ ์„ ํƒํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ์‹œ๊ณต๊ฐ„์  ์ง‘ํ•ฉ ๋ฎ๊ฐœ ๋ฌธ์ œ๋กœ ๋งŒ๋“ค๊ณ , ์ฐจ๋Ÿ‰ ์ด๋™ ๊ฒฝ๋กœ๋ฅผ ์ด์šฉํ•œ ์‹œ๊ฐ„ ์˜ˆ์ธก ๊ธฐ๋ฐ˜์˜ ์ง‘ํ•ฉ ๋ฎ๊ฐœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด๋ฉด, DOVE ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ฐจ๋Ÿ‰ ๋„คํŠธ์›Œํฌ๋ฅผ ํ†ตํ•œ ์˜คํ”„๋กœ๋”ฉ์„ ์ˆ˜ํ–‰ํ•˜์—ฌ 57%์˜ ์…€๋ฃฐ๋Ÿฌ ๋งํฌ ์‚ฌ์šฉ๋Ÿ‰์„ ํฌ๊ฒŒ ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค.While the architecture of current Internet was designed based on the host-to-host communication paradigm for resource sharing, today's Internet usage has been concentrated on content retrievals. As a result, most of Internet traffic is generated by the content retrievals, such as video service and P2P file sharing. However, the discrepancy between the current Internet architecture and the real usage pattern causes inefficient content deliveries (e.g., duplicated content transmission for the same popular content), which leads to traffic explosion problem. To address such issues, there have been a lot of efforts to reduce the network traffic by (i) redesigning the Internet architecture and (ii) proposing data offloading schemes. In this dissertation, we investigate traffic reduction schemes in two different domains, information-centric networking and information-centric vehicular networks. First, we propose a traffic-reduction content-discovery scheme for information-centric networking (ICN). ICN has been proposed to resolve the problem of current Internet such as traffic explosion by redesigning the Internet architecture in a clean-slate manner. ICN can provide substantial benefits such as network traffic reduction by exploiting a nearby (cached) copy of content and reducing duplicated transmissions for the same content request. However, prior studies usually rely on an opportunistic cache-hit (happen-to-meet) to utilize the cached contents. In the happen-to-meet fashion, only the content cached on the path towards the content source can be utilized, which limits the network-wide usage of the in-network storages. To exploit cached contents better, our proposed scheme SCAN discovers nearby content copies. SCAN exchanges the cached content information among the neighbor routers using Bloom filters for the content discovery. With extensive simulations, SCAN shows better performance than a happen-to-meet cache-hit scheme in terms of average hop counts, traffic volume, and load balancing among links. Next, we propose a traffic offloading scheme for information-centric vehicular network. In wireless environments, the increasing mobile traffic is becoming a serious concern for mobile network providers. To address the traffic explosion problem, there have been a lot of efforts to offload the traffic from cellular networks to other networks, such as WiFi hotspots and femtocells. Our work moves forward from prior studies by focusing on the potential benefits of vehicular networks for data offloading. In particular, we propose a Data Offloading framework using Vehicular nEtworks (DOVE), which reduces the cellular traffic for in-vehicle data services in a cost effective way. DOVE exploits vehicle trajectories for offloading purposes so that content files requested by vehicles can be delivered via vehicular networks rather than cellular networks for economical purposes. We formulate the problem of selecting offloading positions as a spatio-temporal set-covering problem, and propose a time-prediction based set-covering algorithm using vehicle trajectories. Simulation results show that our DOVE framework can significantly reduce 57% of cellular link usage by performing data offloading through vehicular networks.I. Introduction 1 II. Content Discovery for Information-Centric Networking 4 2.1 Introduction 4 2.2 Related Work 7 2.2.1 Named Data Networking (NDN) 7 2.2.2 ICN-based Schemes 8 2.2.3 Approaches using BFs 10 2.3 SCAN Architecture 11 2.3.1 SCAN Description 11 2.3.2 SCAN Operation 16 2.3.3 Discussion 19 2.4 CIB Maintenance in SCAN 21 2.4.1 Information Unit 21 2.4.2 Information Exchange 22 2.4.3 Information Decay 23 2.5 Performance Evaluation 25 2.5.1 Content Discovery Performance 27 2.5.2 Network-wide Performance 28 2.5.3 Effect of Cache Size 30 2.5.4 Effect of Scanning Depth 32 2.5.5 Effect of Information Decay Probability 34 2.5.6 Effect of BF Size 36 2.5.7 Effect of BF Exchange Interval 39 2.5.8 Comparison with ICN-enhancements 39 III. Data Offloading for Information-Centric Vehicular Networks 42 3.1 Introduction 42 3.2 Related Work 44 3.3 Problem Formulation 46 3.3.1 Target Scenario and Goal 46 3.3.2 DOVE Components and Assumptions 46 3.3.3 Design Principles using RNs 49 3.3.4 The Concept of Offloading in DOVE 50 3.4 Design and Operations of DOVE 51 3.4.1 Travel Time Prediction 51 3.4.2 The Operation of TCC 53 3.4.3 The Selection Algorithm for Offloading Positions 54 3.4.4 The Selection of Providers 59 3.4.5 The Operation of Vehicles using Offloading Positions 59 3.5 Performance Evaluation 60 3.5.1 Overall Performance of Data Offloading 61 3.5.2 The Impact of Vehicle Number 67 3.5.3 The Impact of Vehicle Speed 68 3.5.4 The Impact of Waiting Time 70 3.5.5 The Impact of Deployment Ratio and Tolerance Time 71 IV. Conclusion 74 Bibliography 76 Korean Abstract 82Docto

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie

    ์ž์œจ์ฃผํ–‰์„ ์œ„ํ•œ V2X ๊ธฐ๋ฐ˜ ์ฐจ๋Ÿ‰ CDN ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณตํ•™์ „๋ฌธ๋Œ€ํ•™์› ์‘์šฉ๊ณตํ•™๊ณผ, 2021. 2. ๊น€์„ฑ์šฐ.Recent technical innovation has driven the evolution of autonomous vehicles. To improve safety as well as on-road vehicular experience, vehicles should be connected with each other or to vehicular networks. Some specification groups, e.g., IEEE and 3GPP, have studied and released vehicular communication requirements and architecture. IEEEs Wireless Access in Vehicular Environment focuses on dedicated and short-range communication, while 3GPPs New radio V2X supports not only sidelink but also uplink communication. The 3GPP Release 16, which supports 5G New Radio, offers evolved functionalities such as network slice, Network Function Virtualization, and Software-Defined Networking. In this study, we define and design a vehicular network architecture compliant with 5G core networks. For localization of autonomous driving vehicles, a high-definition map needs to contain the context of trajectory . We also propose new methods by which autonomous vehicles can push and pull map content efficiently, without causing bottlenecks on the network core. We evaluate the performance of V2X and of the proposed caching policy via network simulations. Experimental results indicate that the proposed method improves the performance of vehicular content delivery in real-world road environments.์ตœ๊ทผ๋“ค์–ด ๊ธฐ์ˆ ์˜ ํ˜์‹ ์€ ์ž์œจ์ฃผํ–‰ ์ž๋™์ฐจ์˜ ๋ฐœ์ „์„ ๊ฐ€์†ํ™” ํ•˜๊ณ  ์žˆ๋‹ค. ๋ณด๋‹ค ๋†’์€ ์ˆ˜์ค€์˜ ์ž์œจ ์ฃผํ–‰์„ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด์„œ, ์ฐจ๋Ÿ‰์€ ๋„คํŠธ์›Œํฌ๋ฅผ ํ†ตํ•ด ์„œ๋กœ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ์–ด์•ผ ํ•˜๊ณ  ์ฐจ๋Ÿ‰์˜ ์•ˆ์ „๊ณผ ํŽธ์˜์„ฑ์„ ํ–ฅ์ƒ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋„๋ก ์ •๋ณด๋ฅผ ๊ณต์œ  ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ํ‘œ์ค€ํ™” ๋‹จ์ฒด์ธ IEEE์™€ 3GPP๋Š” ์ฐจ๋Ÿ‰ ํ†ต์‹  ์š”๊ตฌ์‚ฌํ•ญ, ์•„ํ‚คํ…์ฒ˜๋ฅผ ์—ฐ๊ตฌํ•˜๊ณ  ๊ฐœ์ •ํ•ด์™”๋‹ค. IEEE๊ฐ€ ์ „์šฉ ์ฑ„๋„์„ ํ†ตํ•œ ๊ทผ์ ‘ ์ง€์—ญ ํ†ต์‹ ์— ์ดˆ์ ์„ ๋งž์ถ”๋Š” ๋ฐ˜๋ฉด์—, 3GPP์˜ New Radio V2X๋Š” Sidelink ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ Uplink ํ†ต์‹ ์„ ๋™์‹œ์— ์ง€์›ํ•œ๋‹ค. 5G ํ†ต์‹ ์„ ์ง€์›ํ•˜๋Š” 3GPP Release 16์€ Network Slice, NFV, SDN๊ณผ ๊ฐ™์€ ์ƒˆ๋กœ์šด ํ†ต์‹  ๊ธฐ๋Šฅ๋“ค์„ ์ œ๊ณตํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์ƒˆ๋กญ๊ฒŒ ์ •์˜๋œ 5G Core Network Architecture๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ฐจ๋Ÿ‰ ๋„คํŠธ์›Œํฌ๋ฅผ ์ •์˜ํ•˜๊ณ  ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ž์œจ์ฃผํ–‰ ์ž๋™์ฐจ์˜ ์ธก์œ„๋ฅผ ์œ„ํ•ด์„œ, ๊ณ ํ•ด์ƒ๋„ ์ง€๋„๋Š” ๊ฐ ๊ตฌ์„ฑ์š”์†Œ๋“ค์˜ ์˜๋ฏธ์™€ ์†์„ฑ์„ ์ž์„ธํ•˜๊ฒŒ ํฌํ•จํ•˜๊ณ  ์žˆ์–ด์•ผ ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ด ์—ฐ๊ตฌ์—์„œ V2X ๋„คํŠธ์›Œํฌ ์ƒ์— HD map์„ ์ค‘๊ณ„ํ•  ์ˆ˜ ์žˆ๋Š” Edge Server๋ฅผ ์ œ์•ˆ ํ•จ์œผ๋กœ์จ, ์ค‘์•™์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ณ‘๋ชฉํ˜„์ƒ์„ ์ค„์ด๊ณ  ์ „์†ก Delay๋ฅผ ์ตœ์†Œํ™”ํ•œ๋‹ค. ๋˜ํ•œ Edge์˜ ์ปจํ…์ธ ๋ฅผ ๋“ฑ๋กํ•˜๊ณ  ์‚ญ์ œํ•˜๋Š” ์ •์ฑ…์œผ๋กœ ๊ธฐ์กด์˜ LRU, LFU๊ฐ€ ์•„๋‹Œ ์ƒˆ๋กœ์šด ์ปจํ…์ธ  ๊ต์ฒด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์‹ค์ œ ์ฃผํ–‰ ์‹œํ—˜๊ณผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ์ „์†ก ํ’ˆ์งˆ์„ ํ–ฅ์ƒ์‹œ์ผฐ์œผ๋ฉฐ, Edge ์ปจํ…์ธ ์˜ ํ™œ์šฉ๋„๋ฅผ ๋†’์˜€๋‹ค.I. Introduction 1 II. Related Works 6 2.1 V2X Standardization 6 2.1.1 IEEE WAVE 6 2.1.2 3GPP C-V2X 9 2.2 Geographic Contents 14 2.3 Vehicular Content Centric Network 17 III. System Modeling 20 3.1 NR-V2X Architecture Analysis 20 3.2 Caching Strategy for HD Map Acquisition 23 IV. Evaluation 30 4.1 Contents Replacement Strategy 30 4.2 V2X Characteristics 36 4.3 Edge Performance in Driving on the Road 38 4.4 Edge Performance on 3D Point Clouds Caching for Localization 44 V. Conclusion 47 Bibliography 49 Abstract 54Maste

    Quality of service aware data dissemination in vehicular Ad Hoc networks

    Full text link
    Des systรจmes de transport intelligents (STI) seront รฉventuellement fournis dans un proche avenir pour la sรฉcuritรฉ et le confort des personnes lors de leurs dรฉplacements sur les routes. Les rรฉseaux ad-hoc vรฉhiculaires (VANETs) reprรฉsentent l'รฉlรฉment clรฉ des STI. Les VANETs sont formรฉs par des vรฉhicules qui communiquent entre eux et avec l'infrastructure. En effet, les vรฉhicules pourront รฉchanger des messages qui comprennent, par exemple, des informations sur la circulation routiรจre, les situations d'urgence et les divertissements. En particulier, les messages d'urgence sont diffusรฉs par des vรฉhicules en cas d'urgence (p.ex. un accident de voiture); afin de permettre aux conducteurs de rรฉagir ร  temps (p.ex., ralentir), les messages d'urgence doivent รชtre diffusรฉs de maniรจre fiable dans un dรฉlai trรจs court. Dans les VANETs, il existe plusieurs facteurs, tels que le canal ร  pertes, les terminaux cachรฉs, les interfรฉrences et la bande passante limitรฉe, qui compliquent รฉnormรฉment la satisfaction des exigences de fiabilitรฉ et de dรฉlai des messages d'urgence. Dans cette thรจse, en guise de premiรจre contribution, nous proposons un schรฉma de diffusion efficace ร  plusieurs sauts, appelรฉ Dynamic Partitioning Scheme (DPS), pour diffuser les messages d'urgence. DPS calcule les tailles de partitions dynamiques et le calendrier de transmission pour chaque partition; ร  l'intรฉrieur de la zone arriรจre de l'expรฉditeur, les partitions sont calculรฉes de sorte qu'en moyenne chaque partition contient au moins un seul vรฉhicule; l'objectif est de s'assurer que seul un vรฉhicule dans la partition la plus รฉloignรฉe (de l'expรฉditeur) est utilisรฉ pour diffuser le message, jusqu'au saut suivant; ceci donne lieu ร  un dรฉlai d'un saut plus court. DPS assure une diffusion rapide des messages d'urgence. En outre, un nouveau mรฉcanisme d'รฉtablissement de liaison, qui utilise des tonalitรฉs occupรฉes, est proposรฉ pour rรฉsoudre le problรจme du problรจme de terminal cachรฉ. Dans les VANETs, la Multidiffusion, c'est-ร -dire la transmission d'un message d'une source ร  un nombre limitรฉ de vรฉhicules connus en tant que destinations, est trรจs importante. Par rapport ร  la diffusion unique, avec Multidiffusion, la source peut simultanรฉment prendre en charge plusieurs destinations, via une arborescence de multidiffusion, ce qui permet d'รฉconomiser de la bande passante et de rรฉduire la congestion du rรฉseau. Cependant, puisque les VANETs ont une topologie dynamique, le maintien de la connectivitรฉ de l'arbre de multidiffusion est un problรจme majeur. Comme deuxiรจme contribution, nous proposons deux approches pour modรฉliser l'utilisation totale de bande passante d'une arborescence de multidiffusion: (i) la premiรจre approche considรจre le nombre de segments de route impliquรฉs dans l'arbre de multidiffusion et (ii) la seconde approche considรจre le nombre d'intersections relais dans l'arbre de multidiffusion. Une heuristique est proposรฉe pour chaque approche. Pour assurer la qualitรฉ de service de l'arbre de multidiffusion, des procรฉdures efficaces sont proposรฉes pour le suivi des destinations et la surveillance de la qualitรฉ de service des segments de route. Comme troisiรจme contribution, nous รฉtudions le problรจme de la congestion causรฉe par le routage du trafic de donnรฉes dans les VANETs. Nous proposons (1) une approche de routage basรฉe sur lโ€™infonuagique qui, contrairement aux approches existantes, prend en compte les chemins de routage existants qui relaient dรฉjร  les donnรฉes dans les VANETs. Les nouvelles demandes de routage sont traitรฉes de sorte qu'aucun segment de route ne soit surchargรฉ par plusieurs chemins de routage croisรฉs. Au lieu d'acheminer les donnรฉes en utilisant des chemins de routage sur un nombre limitรฉ de segments de route, notre approche รฉquilibre la charge des donnรฉes en utilisant des chemins de routage sur l'ensemble des tronรงons routiers urbains, dans le but d'empรชcher, dans la mesure du possible, les congestions locales dans les VANETs; et (2) une approche basรฉe sur le rรฉseau dรฉfini par logiciel (SDN) pour surveiller la connectivitรฉ VANET en temps rรฉel et les dรฉlais de transmission sur chaque segment de route. Les donnรฉes de surveillance sont utilisรฉes en entrรฉe de l'approche de routage.Intelligent Transportation Systems (ITS) will be eventually provided in the near future for both safety and comfort of people during their travel on the roads. Vehicular ad-hoc Networks (VANETs), represent the key component of ITS. VANETs consist of vehicles that communicate with each other and with the infrastructure. Indeed, vehicles will be able to exchange messages that include, for example, information about road traffic, emergency situations, and entertainment. Particularly, emergency messages are broadcasted by vehicles in case of an emergency (e.g., car accident); in order to allow drivers to react in time (e.g., slow down), emergency messages must be reliably disseminated with very short delay. In VANETs, there are several factors, such as lossy channel, hidden terminals, interferences and scarce bandwidth, which make satisfying reliability and delay requirements of emergency messages very challenging. In this thesis, as the first contribution, we propose a reliable time-efficient and multi-hop broadcasting scheme, called Dynamic Partitioning Scheme (DPS), to disseminate emergency messages. DPS computes dynamic partition sizes and the transmission schedule for each partition; inside the back area of the sender, the partitions are computed such that in average each partition contains at least a single vehicle; the objective is to ensure that only a vehicle in the farthest partition (from the sender) is used to disseminate the message, to next hop, resulting in shorter one hop delay. DPS ensures fast dissemination of emergency messages. Moreover, a new handshaking mechanism, that uses busy tones, is proposed to solve the problem of hidden terminal problem. In VANETs, Multicasting, i.e. delivering a message from a source to a limited known number of vehicles as destinations, is very important. Compared to Unicasting, with Multicasting, the source can simultaneously support multiple destinations, via a multicast tree, saving bandwidth and reducing overall communication congestion. However, since VANETs have a dynamic topology, maintaining the connectivity of the multicast tree is a major issue. As the second contribution, we propose two approaches to model total bandwidth usage of a multicast tree: (i) the first approach considers the number of road segments involved in the multicast tree and (ii) the second approach considers the number of relaying intersections involved in the multicast tree. A heuristic is proposed for each approach. To ensure QoS of the multicasting tree, efficient procedures are proposed for tracking destinations and monitoring QoS of road segments. As the third contribution, we study the problem of network congestion in routing data traffic in VANETs. We propose (1) a Cloud-based routing approach that, in opposition to existing approaches, takes into account existing routing paths which are already relaying data in VANETs. New routing requests are processed such that no road segment gets overloaded by multiple crossing routing paths. Instead of routing over a limited set of road segments, our approach balances the load of communication paths over the whole urban road segments, with the objective to prevent, whenever possible, local congestions in VANETs; and (2) a Software Defined Networking (SDN) based approach to monitor real-time VANETs connectivity and transmission delays on each road segment. The monitoring data is used as input to the routing approach

    5G NR-V2X: Towards Connected and Cooperative Autonomous Driving

    Full text link
    This paper is concerned with the key features and fundamental technology components for 5G New Radio (NR) for genuine realization of connected and cooperative autonomous driving. We discuss the major functionalities of physical layer, Sidelink features and its resource allocation, architecture flexibility, security and privacy mechanisms, and precise positioning techniques with an evolution path from existing cellular vehicle-to-everything (V2X) technology towards NR-V2X. Moreover, we envisage and highlight the potential of machine learning for further enhancement of various NR-V2X services. Lastly, we show how 5G NR can be configured to support advanced V2X use cases in autonomous driving

    A trajectory-driven opportunistic routing protocol for VCPS

    Get PDF
    By exploring sensing, computing and communication capabilities on vehicles, Vehicular Cyber-Physical Systems (VCPS) are promising solutions to provide road safety and traffic efficiency in Intelligent Transportation Systems (ITS). Due to high mobility and sparse network density, VCPS could be severely affected by intermittent connectivity. In this paper, we propose a Trajectory-Driven Opportunistic Routing (TDOR) protocol, which is primarily applied for sparse networks, e.g., Delay/Disruption Tolerant Networks (DTNs). With geographic routing protocol designed in DTNs, existing works primarily consider the proximity to destination as a criterion for nexthop selections. Differently, by utilizing GPS information of onboard vehicle navigation system to help with data transmission, TDOR selects the relay node based on the proximity to trajectory. This aims to provide reliable and efficient message delivery, i.e., high delivery ratio and low transmission overhead. TDOR is more immune to disruptions, due to unfavorable mobility of intermediate nodes. Performance evaluation results show TDOR outperforms well known opportunistic geographic routing protocols, and achieves much lower routing overhead for comparable delivery ratio
    • โ€ฆ
    corecore