2,287 research outputs found

    Techniques of data prefetching, replication, and consistency in the Internet

    Get PDF
    Internet has become a major infrastructure for information sharing in our daily life, and indispensable to critical and large applications in industry, government, business, and education. Internet bandwidth (or the network speed to transfer data) has been dramatically increased, however, the latency time (or the delay to physically access data) has been reduced in a much slower pace. The rich bandwidth and lagging latency can be effectively coped with in Internet systems by three data management techniques: caching, replication, and prefetching. The focus of this dissertation is to address the latency problem in Internet by utilizing the rich bandwidth and large storage capacity for efficiently prefetching data to significantly improve the Web content caching performance, by proposing and implementing scalable data consistency maintenance methods to handle Internet Web address caching in distributed name systems (DNS), and to handle massive data replications in peer-to-peer systems. While the DNS service is critical in Internet, peer-to-peer data sharing is being accepted as an important activity in Internet.;We have made three contributions in developing prefetching techniques. First, we have proposed an efficient data structure for maintaining Web access information, called popularity-based Prediction by Partial Matching (PB-PPM), where data are placed and replaced guided by popularity information of Web accesses, thus only important and useful information is stored. PB-PPM greatly reduces the required storage space, and improves the prediction accuracy. Second, a major weakness in existing Web servers is that prefetching activities are scheduled independently of dynamically changing server workloads. Without a proper control and coordination between the two kinds of activities, prefetching can negatively affect the Web services and degrade the Web access performance. to address this problem, we have developed a queuing model to characterize the interactions. Guided by the model, we have designed a coordination scheme that dynamically adjusts the prefetching aggressiveness in Web Servers. This scheme not only prevents the Web servers from being overloaded, but it can also minimize the average server response time. Finally, we have proposed a scheme that effectively coordinates the sharing of access information for both proxy and Web servers. With the support of this scheme, the accuracy of prefetching decisions is significantly improved.;Regarding data consistency support for Internet caching and data replications, we have conducted three significant studies. First, we have developed a consistency support technique to maintain the data consistency among the replicas in structured P2P networks. Based on Pastry, an existing and popular P2P system, we have implemented this scheme, and show that it can effectively maintain consistency while prevent hot-spot and node-failure problems. Second, we have designed and implemented a DNS cache update protocol, called DNScup, to provide strong consistency for domain/IP mappings. Finally, we have developed a dynamic lease scheme to timely update the replicas in Internet

    Bidirectional Growth based Mining and Cyclic Behaviour Analysis of Web Sequential Patterns

    Get PDF
    Web sequential patterns are important for analyzing and understanding users behaviour to improve the quality of service offered by the World Wide Web. Web Prefetching is one such technique that utilizes prefetching rules derived through Cyclic Model Analysis of the mined Web sequential patterns. The more accurate the prediction and more satisfying the results of prefetching if we use a highly efficient and scalable mining technique such as the Bidirectional Growth based Directed Acyclic Graph. In this paper, we propose a novel algorithm called Bidirectional Growth based mining Cyclic behavior Analysis of web sequential Patterns (BGCAP) that effectively combines these strategies to generate prefetching rules in the form of 2-sequence patterns with Periodicity and threshold of Cyclic Behaviour that can be utilized to effectively prefetch Web pages, thus reducing the users perceived latency. As BGCAP is based on Bidirectional pattern growth, it performs only (log n+1) levels of recursion for mining n Web sequential patterns. Our experimental results show that prefetching rules generated using BGCAP is 5-10 percent faster for different data sizes and 10-15% faster for a fixed data size than TD-Mine. In addition, BGCAP generates about 5-15 percent more prefetching rules than TD-Mine.Comment: 19 page

    Adaptive and secured resource management in distributed and Internet systems

    Get PDF
    The effectiveness of computer system resource management has been always determined by two major factors: (1) workload demands and management objectives, (2) the updates of the computer technology. These two factors are dynamically changing, and resource management systems must be timely adaptive to the changes. This dissertation attempts to address several important and related resource management issues.;We first study memory system utilization in centralized servers by improving memory performance of sorting algorithms, which provides fundamental understanding on memory system organizations and its performance optimizations for data-intensive workloads. to reduce different types of cache misses, we restructure the mergesort and quicksort algorithms by integrating tiling, padding, and buffering techniques and by repartitioning the data set. Our study shows substantial performance improvements from our new methods.;We have further extended the work to improve load sharing for utilizing global memory resources in distributed systems. Aiming at reducing the memory resource contention caused by page faults and I/O activities, we have developed and examined load sharing policies by considering effective usage of global memory in addition to CPU load balancing in both homogeneous and heterogeneous clusters.;Extending our research from clusters to Internet systems, we have further investigated memory and storage utilizations in Web caching systems. We have proposed several novel management schemes to restructure and decentralize the existing caching system by exploiting data locality at different levels of the global memory hierarchy and by effectively sharing data objects among the clients and their proxy caches.;Data integrity and communication anonymity issues are raised from our decentralized Web caching system design, which are also security concerns for general peer-to-peer systems. We propose an integrity protocol to ensure data integrity, and several protocols to achieve mutual communication anonymity between an information requester and a provider.;The potential impact and contributions of this dissertation are briefly stated as follows: (1) two major research topics identified in this dissertation are fundamentally important for the growth and development of information technology, and will continue to be demanding topics for a long term. (2) Our proposed cache-effective sorting methods bridge a serious gap between analytical complexity of algorithms and their execution complexity in practice due to the increasingly deep memory hierarchy in computer systems. This approach can also be used to improve memory performance at different levels of the memory hierarchy, such as I/O and file systems. (3) Our load sharing principle of giving a high priority to the requests of data accesses in memory and I/Os timely adapts the technology changes and effectively responds to the increasing demand of data-intensive applications. (4) Our proposed decentralized Web caching framework and its resource management schemes present a comprehensive case study to examine the P2P model. Our results and experiences can be used for related and further studies in distributed computing. (5) The proposed data integrity and communication anonymity protocols address limits and weaknesses of existing ones, and place a solid foundation for us to continue our work in this important area

    TailoredRE: A Personalized Cloud-based Traffic Redundancy Elimination for Smartphones

    Get PDF
    The exceptional rise in usages of mobile devices such as smartphones and tablets has contributed to a massive increase in wireless network trac both Cellular (3G/4G/LTE) and WiFi. The unprecedented growth in wireless network trac not only strain the battery of the mobile devices but also bogs down the last-hop wireless access links. Interestingly, a signicant part of this data trac exhibits high level of redundancy in them due to repeated access of popular contents in the web. Hence, a good amount of research both in academia and in industries has studied, analyzed and designed diverse systems that attempt to eliminate redundancy in the network trac. Several of the existing Trac Redundancy Elimination (TRE) solutions either does not improve last-hop wireless access links or involves inecient use of compute resources from resource-constrained mobile devices. In this research, we propose TailoredRE, a personalized cloud-based trac redundancy elimination system. The main objective of TailoredRE is to tailor TRE mechanism such that TRE is performed against selected applications rather than application agnostically, thus improving eciency by avoiding caching of unnecessary data chunks. In our system, we leverage the rich resources of the cloud to conduct TRE by ooading most of the operational cost from the smartphones or mobile devices to its clones (proxies) available in the cloud. We cluster the multiple individual user clones in the cloud based on the factors of connectedness among users such as usage of similar applications, common interests in specic web contents etc., to improve the eciency of caching in the cloud. This thesis encompasses motivation, system design along with detailed analysis of the results obtained through simulation and real implementation of TailoredRE system

    Active caching for recommender systems

    Get PDF
    Web users are often overwhelmed by the amount of information available while carrying out browsing and searching tasks. Recommender systems substantially reduce the information overload by suggesting a list of similar documents that users might find interesting. However, generating these ranked lists requires an enormous amount of resources that often results in access latency. Caching frequently accessed data has been a useful technique for reducing stress on limited resources and improving response time. Traditional passive caching techniques, where the focus is on answering queries based on temporal locality or popularity, achieve a very limited performance gain. In this dissertation, we are proposing an ‘active caching’ technique for recommender systems as an extension of the caching model. In this approach estimation is used to generate an answer for queries whose results are not explicitly cached, where the estimation makes use of the partial order lists cached for related queries. By answering non-cached queries along with cached queries, the active caching system acts as a form of query processor and offers substantial improvement over traditional caching methodologies. Test results for several data sets and recommendation techniques show substantial improvement in the cache hit rate, byte hit rate and CPU costs, while achieving reasonable recall rates. To ameliorate the performance of proposed active caching solution, a shared neighbor similarity measure is introduced which improves the recall rates by eliminating the dependence on monotinicity in the partial order lists. Finally, a greedy balancing cache selection policy is also proposed to select most appropriate data objects for the cache that help to improve the cache hit rate and recall further

    REVIEW PAPER ON WEB PAGE PREDICTION USING DATA MINING

    Get PDF
    The continuous growth of the World Wide Web imposes the need of new methods of design and determines how to access a web page in the web usage mining by performing preprocessing of the data in a web page and development of on-line information services. The need for predicting the user’s needs in order to improve the usability and user retention of a web site is more than evident now a day. Without proper guidance, a visitor often wanders aimlessly without visiting important pages, loses interest, and leaves the site sooner than expected. In proposed system focus on investigating efficient and effective sequential access pattern mining techniques for web usage data. The mined patterns are then used for matching and generating web links for online recommendations. A web page of interest application will be developed for evaluating the quality and effectiveness of the discovered knowledge.   Keyword: Webpage Prediction, Web Mining, MRF, ANN, KNN, GA
    • …
    corecore