632 research outputs found

    Utilizing elementary mode analysis, pathway thermodynamics, and a genetic algorithm for metabolic flux determination and optimal metabolic network design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microbial hosts offer a number of unique advantages when used as production systems for both native and heterologous small-molecules. These advantages include high selectivity and benign environmental impact; however, a principal drawback is low yield and/or productivity, which limits economic viability. Therefore a major challenge in developing a microbial production system is to maximize formation of a specific product while sustaining cell growth. Tools to rationally reconfigure microbial metabolism for these potentially conflicting objectives remain limited. Exhaustively exploring combinations of genetic modifications is both experimentally and computationally inefficient, and can become intractable when multiple gene deletions or insertions need to be considered. Alternatively, the search for desirable gene modifications may be solved heuristically as an evolutionary optimization problem. In this study, we combine a genetic algorithm and elementary mode analysis to develop an optimization framework for evolving metabolic networks with energetically favorable pathways for production of both biomass and a compound of interest.</p> <p>Results</p> <p>Utilization of thermodynamically-weighted elementary modes for flux reconstruction of <it>E. coli </it>central metabolism revealed two clusters of EMs with respect to their Δ<it>G</it><sub><it>p</it></sub>°. For proof of principle testing, the algorithm was applied to ethanol and lycopene production in <it>E. coli</it>. The algorithm was used to optimize product formation, biomass formation, and product and biomass formation simultaneously. Predicted knockouts often matched those that have previously been implemented experimentally for improved product formation. The performance of a multi-objective genetic algorithm showed that it is better to couple the two objectives in a single objective genetic algorithm.</p> <p>Conclusion</p> <p>A computationally tractable framework is presented for the redesign of metabolic networks for maximal product formation combining elementary mode analysis (a form of convex analysis), pathway thermodynamics, and a genetic algorithm to optimize the production of two industrially-relevant products, ethanol and lycopene, from <it>E. coli</it>. The designed algorithm can be applied to any small-scale model of cellular metabolism theoretically utilizing any substrate and applied towards the production of any product.</p

    Investigations on the application of complex cell models in the simulation of bioprocesses

    Get PDF
    [no abstract

    Current Challenges in Modeling Cellular Metabolism

    Get PDF
    Mathematical and computational models play an essential role in understanding the cellular metabolism. They are used as platforms to integrate current knowledge on a biological system and to systematically test and predict the effect of manipulations to such systems. The recent advances in genome sequencing techniques have facilitated the reconstruction of genome-scale metabolic networks for a wide variety of organisms from microbes to human cells. These models have been successfully used in multiple biotechnological applications. Despite these advancements, modeling cellular metabolism still presents many challenges. The aim of this Research Topic is not only to expose and consolidate the state-of-the-art in metabolic modeling approaches, but also to push this frontier beyond the current edge through the introduction of innovative solutions. The articles presented in this e-book address some of the main challenges in the field, including the integration of different modeling formalisms, the integration of heterogeneous data sources into metabolic models, explicit representation of other biological processes during phenotype simulation, and standardization efforts in the representation of metabolic models and simulation results

    Metabolic Pathway Analysis: from small to genome-scale networks

    Get PDF
    The need for mathematical modelling of biological processes has grown alongside with the achievements in the experimental field leading to the appearance and development of new fields like systems biology. Systems biology aims at generating new knowledge through modelling and integration of experimental data in order to develop a holistic understanding of organisms. In the first part of my PhD thesis, I compare two different levels of abstraction used for computing metabolic pathways, constraint-based and graph theoretical methods. I show that the current representations of metabolism as a simple graph correspond to wrong mathematical descriptions of metabolic pathways. On the other hand, the use of stoichiometric information and convex analysis as modelling framework like in elementary flux mode analysis, allows to correctly predict metabolic pathways. In the second part of the thesis, I present two of the first methods, based on elementary flux mode analysis, that can compute metabolic pathways in such large metabolic networks: the K-shortest EFMs method and the EFMEvolver method. These methods contribute to an enrichment of the mathematical tools available to model cell biology and more precisely, metabolism. The application of these new methods to biotechnological problems is also explored in this part. In the last part of my thesis, I give an overview of recent achievements in metabolic network reconstruction and constraint-based modelling as well as open issues. Moreover, I discuss possible strategies for integrating experimental data with elementary flux mode analysis. Further improvements in elementary flux mode computation on that direction are put forward

    From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks

    Get PDF
    Many important problems in cell biology arise from the dense nonlinear interactions between functional modules. The importance of mathematical modelling and computer simulation in understanding cellular processes is now indisputable and widely appreciated. Genome-scale metabolic models have gained much popularity and utility in helping us to understand and test hypotheses about these complex networks. However, there are some caveats that come with the use and interpretation of different types of metabolic models, which we aim to highlight here. We discuss and illustrate how the integration of thermodynamic and kinetic properties of the yeast metabolic networks in network analyses can help in understanding and utilizing this organism more successfully in the areas of metabolic engineering, synthetic biology and disease treatment

    \u3ci\u3eIn silico\u3c/i\u3e Driven Metabolic Engineering Towards Enhancing Biofuel and Biochemical Production

    Get PDF
    The development of a secure and sustainable energy economy is likely to require the production of fuels and commodity chemicals in a renewable manner. There has been renewed interest in biological commodity chemical production recently, in particular focusing on non-edible feedstocks. The fields of metabolic engineering and synthetic biology have arisen in the past 20 years to address the challenge of chemical production from biological feedstocks. Metabolic modeling is a powerful tool for studying the metabolism of an organism and predicting the effects of metabolic engineering strategies. Various techniques have been developed for modeling cellular metabolism, with the underlying principle of mass balance driving the analysis. In this dissertation, two industrially relevant organisms were examined for their potential to produce biofuels. First, Saccharomyces cerevisiae was used to create biodiesel in the form of fatty acid ethyl esters (FAEEs) through expression of a heterologous acyl-transferase enzyme. Several genetic manipulations of lipid metabolic and / or degradation pathways were rationally chosen to enhance FAEE production, and then culture conditions were modified to enhance FAEE production further. The results were used to identify the rate-limiting step in FAEE production, and provide insight to further optimization of FAEE production. Next, Clostridium thermocellum, a cellulolytic thermophile with great potential for consolidated bioprocessing but a weakly understood metabolism, was investigated for enhanced ethanol production. To accomplish the analysis, two models were created for C. thermocellum metabolism. The core metabolic model was used with extensive fermentation data to elucidate kinetic bottlenecks hindering ethanol production. The genome scale metabolic model was constructed and tuned using extensive fermentation data as well, and the refined model was used to investigate complex cellular phenotypes with Flux Balance Analysis. The work presented within provide a platform for continued study of S. cerevisiae and C. thermocellum for the production of valuable biofuels and biochemicals

    In-silico-Systemanalyse von Biopathways

    Get PDF
    Chen M. In silico systems analysis of biopathways. Bielefeld (Germany): Bielefeld University; 2004.In the past decade with the advent of high-throughput technologies, biology has migrated from a descriptive science to a predictive one. A vast amount of information on the metabolism have been produced; a number of specific genetic/metabolic databases and computational systems have been developed, which makes it possible for biologists to perform in silico analysis of metabolism. With experimental data from laboratory, biologists wish to systematically conduct their analysis with an easy-to-use computational system. One major task is to implement molecular information systems that will allow to integrate different molecular database systems, and to design analysis tools (e.g. simulators of complex metabolic reactions). Three key problems are involved: 1) Modeling and simulation of biological processes; 2) Reconstruction of metabolic pathways, leading to predictions about the integrated function of the network; and 3) Comparison of metabolism, providing an important way to reveal the functional relationship between a set of metabolic pathways. This dissertation addresses these problems of in silico systems analysis of biopathways. We developed a software system to integrate the access to different databases, and exploited the Petri net methodology to model and simulate metabolic networks in cells. It develops a computer modeling and simulation technique based on Petri net methodology; investigates metabolic networks at a system level; proposes a markup language for biological data interchange among diverse biological simulators and Petri net tools; establishes a web-based information retrieval system for metabolic pathway prediction; presents an algorithm for metabolic pathway alignment; recommends a nomenclature of cellular signal transduction; and attempts to standardize the representation of biological pathways. Hybrid Petri net methodology is exploited to model metabolic networks. Kinetic modeling strategy and Petri net modeling algorithm are applied to perform the processes of elements functioning and model analysis. The proposed methodology can be used for all other metabolic networks or the virtual cell metabolism. Moreover, perspectives of Petri net modeling and simulation of metabolic networks are outlined. A proposal for the Biology Petri Net Markup Language (BioPNML) is presented. The concepts and terminology of the interchange format, as well as its syntax (which is based on XML) are introduced. BioPNML is designed to provide a starting point for the development of a standard interchange format for Bioinformatics and Petri nets. The language makes it possible to exchange biology Petri net diagrams between all supported hardware platforms and versions. It is also designed to associate Petri net models and other known metabolic simulators. A web-based metabolic information retrieval system, PathAligner, is developed in order to predict metabolic pathways from rudimentary elements of pathways. It extracts metabolic information from biological databases via the Internet, and builds metabolic pathways with data sources of genes, sequences, enzymes, metabolites, etc. The system also provides a navigation platform to investigate metabolic related information, and transforms the output data into XML files for further modeling and simulation of the reconstructed pathway. An alignment algorithm to compare the similarity between metabolic pathways is presented. A new definition of the metabolic pathway is proposed. The pathway defined as a linear event sequence is practical for our alignment algorithm. The algorithm is based on strip scoring the similarity of 4-hierarchical EC numbers involved in the pathways. The algorithm described has been implemented and is in current use in the context of the PathAligner system. Furthermore, new methods for the classification and nomenclature of cellular signal transductions are recommended. For each type of characterized signal transduction, a unique ST number is provided. The Signal Transduction Classification Database (STCDB), based on the proposed classification and nomenclature, has been established. By merging the ST numbers with EC numbers, alignments of biopathways are possible. Finally, a detailed model of urea cycle that includes gene regulatory networks, metabolic pathways and signal transduction is demonstrated by using our approaches. A system biological interpretation of the observed behavior of the urea cycle and its related transcriptomics information is proposed to provide new insights for metabolic engineering and medical care
    corecore