15,859 research outputs found

    Deep learning for extracting protein-protein interactions from biomedical literature

    Full text link
    State-of-the-art methods for protein-protein interaction (PPI) extraction are primarily feature-based or kernel-based by leveraging lexical and syntactic information. But how to incorporate such knowledge in the recent deep learning methods remains an open question. In this paper, we propose a multichannel dependency-based convolutional neural network model (McDepCNN). It applies one channel to the embedding vector of each word in the sentence, and another channel to the embedding vector of the head of the corresponding word. Therefore, the model can use richer information obtained from different channels. Experiments on two public benchmarking datasets, AIMed and BioInfer, demonstrate that McDepCNN compares favorably to the state-of-the-art rich-feature and single-kernel based methods. In addition, McDepCNN achieves 24.4% relative improvement in F1-score over the state-of-the-art methods on cross-corpus evaluation and 12% improvement in F1-score over kernel-based methods on "difficult" instances. These results suggest that McDepCNN generalizes more easily over different corpora, and is capable of capturing long distance features in the sentences.Comment: Accepted for publication in Proceedings of the 2017 Workshop on Biomedical Natural Language Processing, 10 pages, 2 figures, 6 table

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    PIE: an online prediction system for proteinā€“protein interactions from text

    Get PDF
    Proteinā€“protein interaction (PPI) extraction has been an important research topic in bio-text mining area, since the PPI information is critical for understanding biological processes. However, there are very few open systems available on the Web and most of the systems focus on keyword searching based on predefined PPIs. PIE (Protein Interaction information Extraction system) is a configurable Web service to extract PPIs from literature, including user-provided papers as well as PubMed articles. After providing abstracts or papers, the prediction results are displayed in an easily readable form with essential, yet compact features. The PIE interface supports more features such as PDF file extraction, PubMed search tool and network communication, which are useful for biologists and bio-system developers. The PIE system utilizes natural language processing techniques and machine learning methodologies to predict PPI sentences, which results in high precision performance for Web users. PIE is freely available at http://bi.snu.ac.kr/pie/

    A Linear Classifier Based on Entity Recognition Tools and a Statistical Approach to Method Extraction in the Protein-Protein Interaction Literature

    Get PDF
    We participated, in the Article Classification and the Interaction Method subtasks (ACT and IMT, respectively) of the Protein-Protein Interaction task of the BioCreative III Challenge. For the ACT, we pursued an extensive testing of available Named Entity Recognition and dictionary tools, and used the most promising ones to extend our Variable Trigonometric Threshold linear classifier. For the IMT, we experimented with a primarily statistical approach, as opposed to employing a deeper natural language processing strategy. Finally, we also studied the benefits of integrating the method extraction approach that we have used for the IMT into the ACT pipeline. For the ACT, our linear article classifier leads to a ranking and classification performance significantly higher than all the reported submissions. For the IMT, our results are comparable to those of other systems, which took very different approaches. For the ACT, we show that the use of named entity recognition tools leads to a substantial improvement in the ranking and classification of articles relevant to protein-protein interaction. Thus, we show that our substantially expanded linear classifier is a very competitive classifier in this domain. Moreover, this classifier produces interpretable surfaces that can be understood as "rules" for human understanding of the classification. In terms of the IMT task, in contrast to other participants, our approach focused on identifying sentences that are likely to bear evidence for the application of a PPI detection method, rather than on classifying a document as relevant to a method. As BioCreative III did not perform an evaluation of the evidence provided by the system, we have conducted a separate assessment; the evaluators agree that our tool is indeed effective in detecting relevant evidence for PPI detection methods.Comment: BMC Bioinformatics. In Pres

    "When they say weed causes depression, but it's your fav antidepressant": Knowledge-aware Attention Framework for Relationship Extraction

    Get PDF
    With the increasing legalization of medical and recreational use of cannabis, more research is needed to understand the association between depression and consumer behavior related to cannabis consumption. Big social media data has potential to provide deeper insights about these associations to public health analysts. In this interdisciplinary study, we demonstrate the value of incorporating domain-specific knowledge in the learning process to identify the relationships between cannabis use and depression. We develop an end-to-end knowledge infused deep learning framework (Gated-K-BERT) that leverages the pre-trained BERT language representation model and domain-specific declarative knowledge source (Drug Abuse Ontology (DAO)) to jointly extract entities and their relationship using gated fusion sharing mechanism. Our model is further tailored to provide more focus to the entities mention in the sentence through entity-position aware attention layer, where ontology is used to locate the target entities position. Experimental results show that inclusion of the knowledge-aware attentive representation in association with BERT can extract the cannabis-depression relationship with better coverage in comparison to the state-of-the-art relation extractor

    Knowledge extraction from unstructured data

    Get PDF
    Data availability is becoming more essential, considering the current growth of web-based data. The data available on the web are represented as unstructured, semi-structured, or structured data. In order to make the web-based data available for several Natural Language Processing or Data Mining tasks, the data needs to be presented as machine-readable data in a structured format. Thus, techniques for addressing the problem of capturing knowledge from unstructured data sources are needed. Knowledge extraction methods are used by the research communities to address this problem; methods that are able to capture knowledge in a natural language text and map the extracted knowledge to existing knowledge presented in knowledge graphs (KGs). These knowledge extraction methods include Named-entity recognition, Named-entity Disambiguation, Relation Recognition, and Relation Linking. This thesis addresses the problem of extracting knowledge over unstructured data and discovering patterns in the extracted knowledge. We devise a rule-based approach for entity and relation recognition and linking. The defined approach effectively maps entities and relations within a text to their resources in a target KG. Additionally, it overcomes the challenges of recognizing and linking entities and relations to a specific KG by employing devised catalogs of linguistic and domain-specific rules that state the criteria to recognize entities in a sentence of a particular language, and a deductive database that encodes knowledge in community-maintained KGs. Moreover, we define a Neuro-symbolic approach for the tasks of knowledge extraction in encyclopedic and domain-specific domains; it combines symbolic and sub-symbolic components to overcome the challenges of entity recognition and linking and the limitation of the availability of training data while maintaining the accuracy of recognizing and linking entities. Additionally, we present a context-aware framework for unveiling semantically related posts in a corpus; it is a knowledge-driven framework that retrieves associated posts effectively. We cast the problem of unveiling semantically related posts in a corpus into the Vertex Coloring Problem. We evaluate the performance of our techniques on several benchmarks related to various domains for knowledge extraction tasks. Furthermore, we apply these methods in real-world scenarios from national and international projects. The outcomes show that our techniques are able to effectively extract knowledge encoded in unstructured data and discover patterns over the extracted knowledge presented as machine-readable data. More importantly, the evaluation results provide evidence to the effectiveness of combining the reasoning capacity of the symbolic frameworks with the power of pattern recognition and classification of sub-symbolic models
    • ā€¦
    corecore