2,894 research outputs found

    Applying Data Fusion Methods to Passage Retrieval in QAS

    Get PDF

    Entity Ranking on Graphs: Studies on Expert Finding

    Get PDF
    Todays web search engines try to offer services for finding various information in addition to simple web pages, like showing locations or answering simple fact queries. Understanding the association of named entities and documents is one of the key steps towards such semantic search tasks. This paper addresses the ranking of entities and models it in a graph-based relevance propagation framework. In particular we study the problem of expert finding as an example of an entity ranking task. Entity containment graphs are introduced that represent the relationship between text fragments on the one hand and their contained entities on the other hand. The paper shows how these graphs can be used to propagate relevance information from the pre-ranked text fragments to their entities. We use this propagation framework to model existing approaches to expert finding based on the entity's indegree and extend them by recursive relevance propagation based on a probabilistic random walk over the entity containment graphs. Experiments on the TREC expert search task compare the retrieval performance of the different graph and propagation models

    Advanced extravehicular protective system Interim report, 1 Jul. 1970 - 31 May 1971

    Get PDF
    Regenerable portable life support systems concepts for EVA use in 1980 and technology assessmen

    A Symmetric Dual Encoding Dense Retrieval Framework for Knowledge-Intensive Visual Question Answering

    Full text link
    Knowledge-Intensive Visual Question Answering (KI-VQA) refers to answering a question about an image whose answer does not lie in the image. This paper presents a new pipeline for KI-VQA tasks, consisting of a retriever and a reader. First, we introduce DEDR, a symmetric dual encoding dense retrieval framework in which documents and queries are encoded into a shared embedding space using uni-modal (textual) and multi-modal encoders. We introduce an iterative knowledge distillation approach that bridges the gap between the representation spaces in these two encoders. Extensive evaluation on two well-established KI-VQA datasets, i.e., OK-VQA and FVQA, suggests that DEDR outperforms state-of-the-art baselines by 11.6% and 30.9% on OK-VQA and FVQA, respectively. Utilizing the passages retrieved by DEDR, we further introduce MM-FiD, an encoder-decoder multi-modal fusion-in-decoder model, for generating a textual answer for KI-VQA tasks. MM-FiD encodes the question, the image, and each retrieved passage separately and uses all passages jointly in its decoder. Compared to competitive baselines in the literature, this approach leads to 5.5% and 8.5% improvements in terms of question answering accuracy on OK-VQA and FVQA, respectively

    Generate, Filter, and Fuse: Query Expansion via Multi-Step Keyword Generation for Zero-Shot Neural Rankers

    Full text link
    Query expansion has been proved to be effective in improving recall and precision of first-stage retrievers, and yet its influence on a complicated, state-of-the-art cross-encoder ranker remains under-explored. We first show that directly applying the expansion techniques in the current literature to state-of-the-art neural rankers can result in deteriorated zero-shot performance. To this end, we propose GFF, a pipeline that includes a large language model and a neural ranker, to Generate, Filter, and Fuse query expansions more effectively in order to improve the zero-shot ranking metrics such as nDCG@10. Specifically, GFF first calls an instruction-following language model to generate query-related keywords through a reasoning chain. Leveraging self-consistency and reciprocal rank weighting, GFF further filters and combines the ranking results of each expanded query dynamically. By utilizing this pipeline, we show that GFF can improve the zero-shot nDCG@10 on BEIR and TREC DL 2019/2020. We also analyze different modelling choices in the GFF pipeline and shed light on the future directions in query expansion for zero-shot neural rankers
    corecore