29 research outputs found

    A Bot Approach-Based Capacity Testing Automation for Online Video Games

    Get PDF
    Online games are a type of computer game that can be accessed using the internet network and played with other players to play the same game. With the advance in online game development, game developers are required to develop games that can be played by many players in one game, especially in the capacity of an online game server. Those needs can be achieved by utilizing bots. However, previous works only conducted bot-based testing for testing network capabilities. In this research, those works will be extended further ftotesting the capacity of a game server. The result of this research suggests that bot approach testing can simulate real players adequately. Other than that, the bot approach also can be scalable. However, the result also suggests that the bot approach still has some limitations as bots cannot simulate the dynamics shown by real players. Special attention is also needed towards clients utilized for executing the bots for them to be scalable

    Models, methods, and tools for developing MMOG backends on commodity clouds

    Get PDF
    Online multiplayer games have grown to unprecedented scales, attracting millions of players worldwide. The revenue from this industry has already eclipsed well-established entertainment industries like music and films and is expected to continue its rapid growth in the future. Massively Multiplayer Online Games (MMOGs) have also been extensively used in research studies and education, further motivating the need to improve their development process. The development of resource-intensive, distributed, real-time applications like MMOG backends involves a variety of challenges. Past research has primarily focused on the development and deployment of MMOG backends on dedicated infrastructures such as on-premise data centers and private clouds, which provide more flexibility but are expensive and hard to set up and maintain. A limited set of works has also focused on utilizing the Infrastructure-as-a-Service (IaaS) layer of public clouds to deploy MMOG backends. These clouds can offer various advantages like a lower barrier to entry, a larger set of resources, etc. but lack resource elasticity, standardization, and focus on development effort, from which MMOG backends can greatly benefit. Meanwhile, other research has also focused on solving various problems related to consistency, performance, and scalability. Despite major advancements in these areas, there is no standardized development methodology to facilitate these features and assimilate the development of MMOG backends on commodity clouds. This thesis is motivated by the results of a systematic mapping study that identifies a gap in research, evident from the fact that only a handful of studies have explored the possibility of utilizing serverless environments within commodity clouds to host these types of backends. These studies are mostly vision papers and do not provide any novel contributions in terms of methods of development or detailed analyses of how such systems could be developed. Using the knowledge gathered from this mapping study, several hypotheses are proposed and a set of technical challenges is identified, guiding the development of a new methodology. The peculiarities of MMOG backends have so far constrained their development and deployment on commodity clouds despite rapid advancements in technology. To explore whether such environments are viable options, a feasibility study is conducted with a minimalistic MMOG prototype to evaluate a limited set of public clouds in terms of hosting MMOG backends. Foli lowing encouraging results from this study, this thesis first motivates toward and then presents a set of models, methods, and tools with which scalable MMOG backends can be developed for and deployed on commodity clouds. These are encapsulated into a software development framework called Athlos which allows software engineers to leverage the proposed development methodology to rapidly create MMOG backend prototypes that utilize the resources of these clouds to attain scalable states and runtimes. The proposed approach is based on a dynamic model which aims to abstract the data requirements and relationships of many types of MMOGs. Based on this model, several methods are outlined that aim to solve various problems and challenges related to the development of MMOG backends, mainly in terms of performance and scalability. Using a modular software architecture, and standardization in common development areas, the proposed framework aims to improve and expedite the development process leading to higher-quality MMOG backends and a lower time to market. The models and methods proposed in this approach can be utilized through various tools during the development lifecycle. The proposed development framework is evaluated qualitatively and quantitatively. The thesis presents three case study MMOG backend prototypes that validate the suitability of the proposed approach. These case studies also provide a proof of concept and are subsequently used to further evaluate the framework. The propositions in this thesis are assessed with respect to the performance, scalability, development effort, and code maintainability of MMOG backends developed using the Athlos framework, using a variety of methods such as small and large-scale simulations and more targeted experimental setups. The results of these experiments uncover useful information about the behavior of MMOG backends. In addition, they provide evidence that MMOG backends developed using the proposed methodology and hosted on serverless environments can: (a) support a very high number of simultaneous players under a given latency threshold, (b) elastically scale both in terms of processing power and memory capacity and (c) significantly reduce the amount of development effort. The results also show that this methodology can accelerate the development of high-performance, distributed, real-time applications like MMOG backends, while also exposing the limitations of Athlos in terms of code maintainability. Finally, the thesis provides a reflection on the research objectives, considerations on the hypotheses and technical challenges, and outlines plans for future work in this domain

    Network traffic characterisation, analysis, modelling and simulation for networked virtual environments

    Get PDF
    Networked virtual environment (NVE) refers to a distributed software system where a simulation, also known as virtual world, is shared over a data network between several users that can interact with each other and the simulation in real-time. NVE systems are omnipresent in the present globally interconnected world, from entertainment industry, where they are one of the foundations for many video games, to pervasive games that focus on e-learning, e-training or social studies. From this relevance derives the interest in better understanding the nature and internal dynamics of the network tra c that vertebrates these systems, useful in elds such as network infrastructure optimisation or the study of Quality of Service and Quality of Experience related to NVE-based services. The goal of the present work is to deepen into this understanding of NVE network tra c by helping to build network tra c models that accurately describe it and can be used as foundations for tools to assist in some of the research elds enumerated before. First contribution of the present work is a formal characterisation for NVE systems, which provides a tool to determine which systems can be considered as NVE. Based on this characterisation it has been possible to identify numerous systems, such as several video games, that qualify as NVE and have an important associated literature focused on network tra c analysis. The next contribution has been the study of this existing literature from a NVE perspective and the proposal of an analysis pipeline, a structured collection of processes and techniques to de ne microscale network models for NVE tra c. This analysis pipeline has been tested and validated against a study case focused on Open Wonderland (OWL), a framework to build NVE systems of di erent purpose. The analysis pipeline helped to de ned network models from experimental OWL tra c and assessed on their accuracy from a statistical perspective. The last contribution has been the design and implementation of simulation tools based on the above OWL models and the network simulation framework ns-3. The purpose of these simulations was to con rm the validity of the OWL models and the analysis pipeline, as well as providing potential tools to support studies related to NVE network tra c. As a result of this nal contribution, it has been proposed to exploit the parallelisation potential of these simulations through High Throughput Computing techniques and tools, aimed to coordinate massively parallel computing workloads over distributed resources

    AI in Learning: Designing the Future

    Get PDF
    AI (Artificial Intelligence) is predicted to radically change teaching and learning in both schools and industry causing radical disruption of work. AI can support well-being initiatives and lifelong learning but educational institutions and companies need to take the changing technology into account. Moving towards AI supported by digital tools requires a dramatic shift in the concept of learning, expertise and the businesses built off of it. Based on the latest research on AI and how it is changing learning and education, this book will focus on the enormous opportunities to expand educational settings with AI for learning in and beyond the traditional classroom. This open access book also introduces ethical challenges related to learning and education, while connecting human learning and machine learning. This book will be of use to a variety of readers, including researchers, AI users, companies and policy makers

    AI in Learning: Designing the Future

    Get PDF
    AI (Artificial Intelligence) is predicted to radically change teaching and learning in both schools and industry causing radical disruption of work. AI can support well-being initiatives and lifelong learning but educational institutions and companies need to take the changing technology into account. Moving towards AI supported by digital tools requires a dramatic shift in the concept of learning, expertise and the businesses built off of it. Based on the latest research on AI and how it is changing learning and education, this book will focus on the enormous opportunities to expand educational settings with AI for learning in and beyond the traditional classroom. This open access book also introduces ethical challenges related to learning and education, while connecting human learning and machine learning. This book will be of use to a variety of readers, including researchers, AI users, companies and policy makers

    Collaborative Game-based Learning - Automatized Adaptation Mechanics for Game-based Collaborative Learning using Game Mastering Concepts

    Get PDF
    Learning and playing represent two core aspects of the information and communication society nowadays. Both issues are subsumed in Digital Education Games, one major field of Serious Games. Serious Games combine concepts of gaming with a broad range of application fields: among others, educational sectors and training or health and sports, but also marketing, advertisement, political education, and other societally relevant areas such as climate, energy, and safety. This work focuses on collaborative learning games, which are Digital Educational Games that combine concepts from collaborative learning with game concepts and technology. Although Digital Educational Games represent a promising addition to existing learning and teaching methods, there are different challenges opposing their application. The tension between a game that is supposed to be fun and the facilitation of serious content constitutes a central challenge to game design. The often high technical complexity and especially the instructors' lack of control over the game represent further challenges. Beyond that, the distinct heterogeneity of learners who often have different play styles, states of knowledge, learning speed, and soft skills, such as teamwork or communication skills, forms a pivotal problem. Apart from that, the vital role of the instructor needs to be taken into account. Within the scope of this dissertation, the problems mentioned above are analyzed, concepts to solve them introduced, and methods developed to address them. The first major contribution contains the conceptualization of a framework for adaptation of collaborative multiplayer games as well as for the control of those games at run-time through an instructor using the Game Master principle. The core concept hereby addresses the design of a model to represent heterogeneous groups and to represent collaborative Serious Games. Based on that, a novel concept for adaptation of collaborative multiplayer games is developed, implemented, and evaluated. Automatic recognition and interpretation of game situations, as well as determination of the most well suited adaptation based on the recognized situations, is a major challenge here. Further, a concept is developed to integrate an instructor in a meaningful way into the course of the game, giving him/her the necessary resources to recognize problems and to intervene and adapt the game at run-time. Therefore, it will be taken into account that the elaborated concepts are applicable in a generic way independent of the underlying game. The second major contribution of this work is the conceptualization and design of a simulation of players and learners in a collaborative multiplayer game that behave realistically based on a player, learner, and interaction model. This is supposed to enable an evaluation of the adaptation and Game Mastering concepts using freely configurable player and learner types. The concepts introduced and developed within this thesis have been thoroughly evaluated using a twofold approach. As a test environment, a collaborative multiplayer Serious Game was designed and implemented. Within that simulation environment, the developed Game Mastering and adaptation concepts were assessed and tested with large sets of virtual learners. Additionally, the concepts were evaluated with real users. Therefore, two different evaluation studies with a total of 60 participants were conducted. The results of the conducted evaluations help to broaden the areas of application of Serious Games as well as to improve their applicability, hence raising acceptance among instructors. The models, architectures, and software solutions developed within this thesis thus build a foundation for further research of multiplayer Serious Games

    Strategic Latency Unleashed: The Role of Technology in a Revisionist Global Order and the Implications for Special Operations Forces

    Get PDF
    The article of record may be found at https://cgsr.llnl.govThis work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-07-6 LCCN-2021901137 LLNL-BOOK-818513 TID-59693This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-07-6 LCCN-2021901137 LLNL-BOOK-818513 TID-5969
    corecore