98 research outputs found

    Multilingual Neural Translation

    Get PDF
    Machine translation (MT) refers to the technology that can automatically translate contents in one language into other languages. Being an important research area in the field of natural language processing, machine translation has typically been considered one of most challenging yet exciting problems. Thanks to research progress in the data-driven statistical machine translation (SMT), MT is recently capable of providing adequate translation services in many language directions and it has been widely deployed in various practical applications and scenarios. Nevertheless, there exist several drawbacks in the SMT framework. The major drawbacks of SMT lie in its dependency in separate components, its simple modeling approach, and the ignorance of global context in the translation process. Those inherent drawbacks prevent the over-tuned SMT models to gain any noticeable improvements over its horizon. Furthermore, SMT is unable to formulate a multilingual approach in which more than two languages are involved. The typical workaround is to develop multiple pair-wise SMT systems and connect them in a complex bundle to perform multilingual translation. Those limitations have called out for innovative approaches to address them effectively. On the other hand, it is noticeable how research on artificial neural networks has progressed rapidly since the beginning of the last decade, thanks to the improvement in computation, i.e faster hardware. Among other machine learning approaches, neural networks are known to be able to capture complex dependencies and learn latent representations. Naturally, it is tempting to apply neural networks in machine translation. First attempts revolve around replacing SMT sub-components by the neural counterparts. Later attempts are more revolutionary by fundamentally changing the whole core of SMT with neural networks, which is now popularly known as neural machine translation (NMT). NMT is an end-to-end system which directly estimate the translation model between the source and target sentences. Furthermore, it is later discovered to capture the inherent hierarchical structure of natural language. This is the key property of NMT that enables a new training paradigm and a less complex approach for multilingual machine translation using neural models. This thesis plays an important role in the evolutional course of machine translation by contributing to the transition of using neural components in SMT to the completely end-to-end NMT and most importantly being the first of the pioneers in building a neural multilingual translation system. First, we proposed an advanced neural-based component: the neural network discriminative word lexicon, which provides a global coverage for the source sentence during the translation process. We aim to alleviate the problems of phrase-based SMT models that are caused by the way how phrase-pair likelihoods are estimated. Such models are unable to gather information from beyond the phrase boundaries. In contrast, our discriminative word lexicon facilitates both the local and global contexts of the source sentences and models the translation using deep neural architectures. Our model has improved the translation quality greatly when being applied in different translation tasks. Moreover, our proposed model has motivated the development of end-to-end NMT architectures later, where both of the source and target sentences are represented with deep neural networks. The second and also the most significant contribution of this thesis is the idea of extending an NMT system to a multilingual neural translation framework without modifying its architecture. Based on the ability of deep neural networks to modeling complex relationships and structures, we utilize NMT to learn and share the cross-lingual information to benefit all translation directions. In order to achieve that purpose, we present two steps: first in incorporating language information into training corpora so that the NMT learns a common semantic space across languages and then force the NMT to translate into the desired target languages. The compelling aspect of the approach compared to other multilingual methods, however, lies in the fact that our multilingual extension is conducted in the preprocessing phase, thus, no change needs to be done inside the NMT architecture. Our proposed method, a universal approach for multilingual MT, enables a seamless coupling with any NMT architecture, thus makes the multilingual expansion to the NMT systems effortlessly. Our experiments and the studies from others have successfully employed our approach with numerous different NMT architectures and show the universality of the approach. Our multilingual neural machine translation accommodates cross-lingual information in a learned common semantic space to improve altogether every translation direction. It is then effectively applied and evaluated in various scenarios. We develop a multilingual translation system that relies on both source and target data to boost up the quality of a single translation direction. Another system could be deployed as a multilingual translation system that only requires being trained once using a multilingual corpus but is able to translate between many languages simultaneously and the delivered quality is more favorable than many translation systems trained separately. Such a system able to learn from large corpora of well-resourced languages, such as English → German or English → French, has proved to enhance other translation direction of low-resourced language pairs like English → Lithuania or German → Romanian. Even more, we show that kind of approach can be applied to the extreme case of zero-resourced translation where no parallel data is available for training without the need of pivot techniques. The research topics of this thesis are not limited to broadening application scopes of our multilingual approach but we also focus on improving its efficiency in practice. Our multilingual models have been further improved to adequately address the multilingual systems whose number of languages is large. The proposed strategies demonstrate that they are effective at achieving better performance in multi-way translation scenarios with greatly reduced training time. Beyond academic evaluations, we could deploy the multilingual ideas in the lecture-themed spontaneous speech translation service (Lecture Translator) at KIT. Interestingly, a derivative product of our systems, the multilingual word embedding corpus available in a dozen of languages, can serve as a useful resource for cross-lingual applications such as cross-lingual document classification, information retrieval, textual entailment or question answering. Detailed analysis shows excellent performance with regard to semantic similarity metrics when using the embeddings on standard cross-lingual classification tasks

    The Circle of Meaning: From Translation to Paraphrasing and Back

    Get PDF
    The preservation of meaning between inputs and outputs is perhaps the most ambitious and, often, the most elusive goal of systems that attempt to process natural language. Nowhere is this goal of more obvious importance than for the tasks of machine translation and paraphrase generation. Preserving meaning between the input and the output is paramount for both, the monolingual vs bilingual distinction notwithstanding. In this thesis, I present a novel, symbiotic relationship between these two tasks that I term the "circle of meaning''. Today's statistical machine translation (SMT) systems require high quality human translations for parameter tuning, in addition to large bi-texts for learning the translation units. This parameter tuning usually involves generating translations at different points in the parameter space and obtaining feedback against human-authored reference translations as to how good the translations. This feedback then dictates what point in the parameter space should be explored next. To measure this feedback, it is generally considered wise to have multiple (usually 4) reference translations to avoid unfair penalization of translation hypotheses which could easily happen given the large number of ways in which a sentence can be translated from one language to another. However, this reliance on multiple reference translations creates a problem since they are labor intensive and expensive to obtain. Therefore, most current MT datasets only contain a single reference. This leads to the problem of reference sparsity---the primary open problem that I address in this dissertation---one that has a serious effect on the SMT parameter tuning process. Bannard and Callison-Burch (2005) were the first to provide a practical connection between phrase-based statistical machine translation and paraphrase generation. However, their technique is restricted to generating phrasal paraphrases. I build upon their approach and augment a phrasal paraphrase extractor into a sentential paraphraser with extremely broad coverage. The novelty in this augmentation lies in the further strengthening of the connection between statistical machine translation and paraphrase generation; whereas Bannard and Callison-Burch only relied on SMT machinery to extract phrasal paraphrase rules and stopped there, I take it a few steps further and build a full English-to-English SMT system. This system can, as expected, ``translate'' any English input sentence into a new English sentence with the same degree of meaning preservation that exists in a bilingual SMT system. In fact, being a state-of-the-art SMT system, it is able to generate n-best "translations" for any given input sentence. This sentential paraphraser, built almost entirely from existing SMT machinery, represents the first 180 degrees of the circle of meaning. To complete the circle, I describe a novel connection in the other direction. I claim that the sentential paraphraser, once built in this fashion, can provide a solution to the reference sparsity problem and, hence, be used to improve the performance a bilingual SMT system. I discuss two different instantiations of the sentential paraphraser and show several results that provide empirical validation for this connection

    IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages

    Full text link
    India has a rich linguistic landscape with languages from 4 major language families spoken by over a billion people. 22 of these languages are listed in the Constitution of India (referred to as scheduled languages) are the focus of this work. Given the linguistic diversity, high-quality and accessible Machine Translation (MT) systems are essential in a country like India. Prior to this work, there was (i) no parallel training data spanning all the 22 languages, (ii) no robust benchmarks covering all these languages and containing content relevant to India, and (iii) no existing translation models which support all the 22 scheduled languages of India. In this work, we aim to address this gap by focusing on the missing pieces required for enabling wide, easy, and open access to good machine translation systems for all 22 scheduled Indian languages. We identify four key areas of improvement: curating and creating larger training datasets, creating diverse and high-quality benchmarks, training multilingual models, and releasing models with open access. Our first contribution is the release of the Bharat Parallel Corpus Collection (BPCC), the largest publicly available parallel corpora for Indic languages. BPCC contains a total of 230M bitext pairs, of which a total of 126M were newly added, including 644K manually translated sentence pairs created as part of this work. Our second contribution is the release of the first n-way parallel benchmark covering all 22 Indian languages, featuring diverse domains, Indian-origin content, and source-original test sets. Next, we present IndicTrans2, the first model to support all 22 languages, surpassing existing models on multiple existing and new benchmarks created as a part of this work. Lastly, to promote accessibility and collaboration, we release our models and associated data with permissive licenses at https://github.com/ai4bharat/IndicTrans2

    Language technologies for a multilingual Europe

    Get PDF
    This volume of the series “Translation and Multilingual Natural Language Processing” includes most of the papers presented at the Workshop “Language Technology for a Multilingual Europe”, held at the University of Hamburg on September 27, 2011 in the framework of the conference GSCL 2011 with the topic “Multilingual Resources and Multilingual Applications”, along with several additional contributions. In addition to an overview article on Machine Translation and two contributions on the European initiatives META-NET and Multilingual Web, the volume includes six full research articles. Our intention with this workshop was to bring together various groups concerned with the umbrella topics of multilingualism and language technology, especially multilingual technologies. This encompassed, on the one hand, representatives from research and development in the field of language technologies, and, on the other hand, users from diverse areas such as, among others, industry, administration and funding agencies. The Workshop “Language Technology for a Multilingual Europe” was co-organised by the two GSCL working groups “Text Technology” and “Machine Translation” (http://gscl.info) as well as by META-NET (http://www.meta-net.eu)
    • …
    corecore