1,346 research outputs found

    Indexing Metric Spaces for Exact Similarity Search

    Full text link
    With the continued digitalization of societal processes, we are seeing an explosion in available data. This is referred to as big data. In a research setting, three aspects of the data are often viewed as the main sources of challenges when attempting to enable value creation from big data: volume, velocity and variety. Many studies address volume or velocity, while much fewer studies concern the variety. Metric space is ideal for addressing variety because it can accommodate any type of data as long as its associated distance notion satisfies the triangle inequality. To accelerate search in metric space, a collection of indexing techniques for metric data have been proposed. However, existing surveys each offers only a narrow coverage, and no comprehensive empirical study of those techniques exists. We offer a survey of all the existing metric indexes that can support exact similarity search, by i) summarizing all the existing partitioning, pruning and validation techniques used for metric indexes, ii) providing the time and storage complexity analysis on the index construction, and iii) report on a comprehensive empirical comparison of their similarity query processing performance. Here, empirical comparisons are used to evaluate the index performance during search as it is hard to see the complexity analysis differences on the similarity query processing and the query performance depends on the pruning and validation abilities related to the data distribution. This article aims at revealing different strengths and weaknesses of different indexing techniques in order to offer guidance on selecting an appropriate indexing technique for a given setting, and directing the future research for metric indexes

    Efficient similarity search in high-dimensional data spaces

    Get PDF
    Similarity search in high-dimensional data spaces is a popular paradigm for many modern database applications, such as content based image retrieval, time series analysis in financial and marketing databases, and data mining. Objects are represented as high-dimensional points or vectors based on their important features. Object similarity is then measured by the distance between feature vectors and similarity search is implemented via range queries or k-Nearest Neighbor (k-NN) queries. Implementing k-NN queries via a sequential scan of large tables of feature vectors is computationally expensive. Building multi-dimensional indexes on the feature vectors for k-NN search also tends to be unsatisfactory when the dimensionality is high. This is due to the poor index performance caused by the dimensionality curse. Dimensionality reduction using the Singular Value Decomposition method is the approach adopted in this study to deal with high-dimensional data. Noting that for many real-world datasets, data distribution tends to be heterogeneous, dimensionality reduction on the entire dataset may cause a significant loss of information. More efficient representation is sought by clustering the data into homogeneous subsets of points, and applying dimensionality reduction to each cluster respectively, i.e., utilizing local rather than global dimensionality reduction. The thesis deals with the improvement of the efficiency of query processing associated with local dimensionality reduction methods, such as the Clustering and Singular Value Decomposition (CSVD) and the Local Dimensionality Reduction (LDR) methods. Variations in the implementation of CSVD are considered and the two methods are compared from the viewpoint of the compression ratio, CPU time, and retrieval efficiency. An exact k-NN algorithm is presented for local dimensionality reduction methods by extending an existing multi-step k-NN search algorithm, which is designed for global dimensionality reduction. Experimental results show that the new method requires less CPU time than the approximate method proposed original for CSVD at a comparable level of accuracy. Optimal subspace dimensionality reduction has the intent of minimizing total query cost. The problem is complicated in that each cluster can retain a different number of dimensions. A hybrid method is presented, combining the best features of the CSVD and LDR methods, to find optimal subspace dimensionalities for clusters generated by local dimensionality reduction methods. The experiments show that the proposed method works well for both real-world datasets and synthetic datasets

    Design and analysis of algorithms for similarity search based on intrinsic dimension

    Get PDF
    One of the most fundamental operations employed in data mining tasks such as classification, cluster analysis, and anomaly detection, is that of similarity search. It has been used in numerous fields of application such as multimedia, information retrieval, recommender systems and pattern recognition. Specifically, a similarity query aims to retrieve from the database the most similar objects to a query object, where the underlying similarity measure is usually expressed as a distance function. The cost of processing similarity queries has been typically assessed in terms of the representational dimension of the data involved, that is, the number of features used to represent individual data objects. It is generally the case that high representational dimension would result in a significant increase in the processing cost of similarity queries. This relation is often attributed to an amalgamation of phenomena, collectively referred to as the curse of dimensionality. However, the observed effects of dimensionality in practice may not be as severe as expected. This has led to the development of models quantifying the complexity of data in terms of some measure of the intrinsic dimensionality. The generalized expansion dimension (GED) is one of such models, which estimates the intrinsic dimension in the vicinity of a query point q through the observation of the ranks and distances of pairs of neighbors with respect to q. This dissertation is mainly concerned with the design and analysis of search algorithms, based on the GED model. In particular, three variants of similarity search problem are considered, including adaptive similarity search, flexible aggregate similarity search, and subspace similarity search. The good practical performance of the proposed algorithms demonstrates the effectiveness of dimensionality-driven design of search algorithms

    A Learned Index for Exact Similarity Search in Metric Spaces

    Full text link
    Indexing is an effective way to support efficient query processing in large databases. Recently the concept of learned index has been explored actively to replace or supplement traditional index structures with machine learning models to reduce storage and search costs. However, accurate and efficient similarity query processing in high-dimensional metric spaces remains to be an open challenge. In this paper, a novel indexing approach called LIMS is proposed to use data clustering and pivot-based data transformation techniques to build learned indexes for efficient similarity query processing in metric spaces. The underlying data is partitioned into clusters such that each cluster follows a relatively uniform data distribution. Data redistribution is achieved by utilizing a small number of pivots for each cluster. Similar data are mapped into compact regions and the mapped values are totally ordinal. Machine learning models are developed to approximate the position of each data record on the disk. Efficient algorithms are designed for processing range queries and nearest neighbor queries based on LIMS, and for index maintenance with dynamic updates. Extensive experiments on real-world and synthetic datasets demonstrate the superiority of LIMS compared with traditional indexes and state-of-the-art learned indexes.Comment: 14 pages, 14 figures, submitted to Transactions on Knowledge and Data Engineerin
    • …
    corecore