121 research outputs found

    A forecast-driven tactical planning model for a serial manufacturing system

    Get PDF
    We examine tactical planning for a serial manufacturing system that produces a product family with many process steps and low volumes. The system is subject to uncertainty in demand, in the supply of raw materials, and in yield at specific process steps. A multi-period forecast gets updated each period, and demand uncertainty is realised in terms of forecast errors. The objective of the system is to satisfy demand at a high service level with minimal operating costs. The primary means for handling the system uncertainty are inventory and production flexibility: each process step can work overtime. We model the trade-offs associated with these tactics, by building a dynamic programming model that allows us to optimise the placement of decoupling buffers across the line, as well as to determine the optimal policies for production smoothing and inventory replenishment. We test the model using both data from a real factory as well as hypothetical data. We find that the model results confirm our intuition as to how these tactics address the trade-offs; based on these tests, we develop a set of managerial insights on the application of these operating tactics. Moreover, we validate the model by comparing its outputs to that from a detailed factory simulation

    Dynamic Procurement of New Products with Covariate Information: The Residual Tree Method

    Get PDF
    Problem definition: We study the practice-motivated problem of dynamically procuring a new, short life-cycle product under demand uncertainty. The firm does not know the demand for the new product but has data on similar products sold in the past, including demand histories and covariate information such as product characteristics. Academic/practical relevance: The dynamic procurement problem has long attracted academic and practitioner interest, and we solve it in an innovative data-driven way with proven theoretical guarantees. This work is also the first to leverage the power of covariate data in solving this problem. Methodology:We propose a new, combined forecasting and optimization algorithm called the Residual Tree method, and analyze its performance via epi-convergence theory and computations. Our method generalizes the classical Scenario Tree method by using covariates to link historical data on similar products to construct demand forecasts for the new product. Results: We prove, under fairly mild conditions, that the Residual Tree method is asymptotically optimal as the size of the data set grows. We also numerically validate the method for problem instances derived using data from the global fashion retailer Zara. We find that ignoring covariate information leads to systematic bias in the optimal solution, translating to a 6–15% increase in the total cost for the problem instances under study. We also find that solutions based on trees using just 2–3 branches per node, which is common in the existing literature, are inadequate, resulting in 30–66% higher total costs compared with our best solution. Managerial implications: The Residual Tree is a new and generalizable approach that uses past data on similar products to manage new product inventories. We also quantify the value of covariate information and of granular demand modeling

    SUPPLY CHAINS FACING ATYPICAL DEMAND: OPTIMAL OPERATIONAL POLICIES AND BENEFITS UNDER INFORMATION SHARING

    Get PDF
    Demand patterns for products with seasonality and or short life-cycles do not follow a clear discernible pattern (to allow predictive time-series modeling of demand) for individual sales events or seasons due to such factors as considerable demand volatility, product promotions, and unforeseen marketplace events. Suppliers supporting such atypical demand patterns typically incur higher holding costs, lower capacity utilization, and lower order fill-rates, particularly under long lead-times and uncertainty in effective capacity. Retailers on the other hand struggle with product overages and supply shortages. On the other hand, atypical demand settings bring huge financial opportunity to supply chain players, and are pervasive. It is suggested in the literature that an effective means to reap these benefits is through increased information sharing between retailers and suppliers, superior forecasting with forecast update techniques, proper replenishment, and custom designed inventory/manufacturing policies. We also believe that sharing of order forecasts, also known as soft-orders, in advance by the buyer could be beneficial to both parties involved. This dissertation in particular studies a two-player supply chain, facing atypical demand. Among the two-players is a buyer (retailer/distributor/vendor) that makes ordering decision(s) in the presence of upstream supply uncertainty and demand forecast revision(s). We propose a stochastic dynamic programming model to optimally deicide on soft-order(s) and a final firm-order under a deposit scheme for initial soft-order(s). While sharing of upstream soft-order inventory position information by the supplier before receiving a final order is not a common industrial practice, nor is it discussed in the literature, our analysis shows that such information sharing is beneficial under certain conditions. Second player of the supply chain is a supplier (manufacturer) that makes production release decision(s) in the presence of limited and random effective capacity, and final order uncertainty. Our stochastic dynamic programming model for optimal production release decision making reveals that substantial savings in order fulfillment cost (that includes holding, overage, and underage costs) can be realized in the presence of advance soft-order(s). Soft-orders can also be shown to improve order fill-rate for the buyer. This research explores complex interactions of factors that affect the operational decision making process, such as costs, demand uncertainty, supply uncertainty, effective capacity severity, information accuracy, information volatility, intentional manipulation of information etc. Through extensive analysis of the operational policies, we provide managerial insights, many of which are intuitively appealing, such as, additional information never increases cost of an optimal decision; many are also counterintuitive, for example, dynamic programming models cannot fully compensate for intentional soft-order inflation by the buyer, even under conditions of a stable and linear order inflation pattern, in the absence of deposits.Supply Chain Economics, Information Sharing, Atypical Demand, Optimal Cost Model, Dynamic Program, Multi-player model

    A computer graphics approach to logistics strategy modelling

    Get PDF
    This thesis describes the development and application of a decision support system for logistics strategy modelling. The decision support system that is developed enables the modelling of logistics systems at a strategic level for any country or area in the world. The model runs on IBM PC or compatible computers under DOS (disk operating system). The decision support system uses colour graphics to represent the different physical functions of a logistics system. The graphics of the system is machine independent. The model displays on the screen the map of the area or country which is being considered for logistic planning. The decision support system is hybrid in term of algorithm. It employs optimisation for allocation. The customers are allocated by building a network path from customer to the source points taking into consideration all the production and throughput constraints on factories, distribution depots and transshipment points. The system uses computer graphic visually interactive heuristics to find the best possible location for distribution depots and transshipment points. In a one depot system it gives the optimum solution but where more than one depot is involved, the optimum solution is not guaranteed. The developed model is a cost-driven model. It represents all the logistics system costs in their proper form. Its solution very much depends on the relationship between all the costs. The locations of depots and transshipment points depend on the relationship between inbound and outbound transportation costs. The model has been validated on real world problems, some of which are described here. The advantages of such a decision support system for the formulation of a problem are discussed. Also discussed is the contribution of such an approach at the validation and solution presentation stages

    SUPPLY CHAINS FACING ATYPICAL DEMAND: OPTIMAL OPERATIONAL POLICIES AND BENEFITS UNDER INFORMATION SHARING

    Get PDF
    Demand patterns for products with seasonality and or short life-cycles do not follow a clear discernible pattern (to allow predictive time-series modeling of demand) for individual sales events or seasons due to such factors as considerable demand volatility, product promotions, and unforeseen marketplace events. Suppliers supporting such atypical demand patterns typically incur higher holding costs, lower capacity utilization, and lower order fill-rates, particularly under long lead-times and uncertainty in effective capacity. Retailers on the other hand struggle with product overages and supply shortages. On the other hand, atypical demand settings bring huge financial opportunity to supply chain players, and are pervasive. It is suggested in the literature that an effective means to reap these benefits is through increased information sharing between retailers and suppliers, superior forecasting with forecast update techniques, proper replenishment, and custom designed inventory/manufacturing policies. We also believe that sharing of order forecasts, also known as soft-orders, in advance by the buyer could be beneficial to both parties involved. This dissertation in particular studies a two-player supply chain, facing atypical demand. Among the two-players is a buyer (retailer/distributor/vendor) that makes ordering decision(s) in the presence of upstream supply uncertainty and demand forecast revision(s). We propose a stochastic dynamic programming model to optimally deicide on soft-order(s) and a final firm-order under a deposit scheme for initial soft-order(s). While sharing of upstream soft-order inventory position information by the supplier before receiving a final order is not a common industrial practice, nor is it discussed in the literature, our analysis shows that such information sharing is beneficial under certain conditions. Second player of the supply chain is a supplier (manufacturer) that makes production release decision(s) in the presence of limited and random effective capacity, and final order uncertainty. Our stochastic dynamic programming model for optimal production release decision making reveals that substantial savings in order fulfillment cost (that includes holding, overage, and underage costs) can be realized in the presence of advance soft-order(s). Soft-orders can also be shown to improve order fill-rate for the buyer. This research explores complex interactions of factors that affect the operational decision making process, such as costs, demand uncertainty, supply uncertainty, effective capacity severity, information accuracy, information volatility, intentional manipulation of information etc. Through extensive analysis of the operational policies, we provide managerial insights, many of which are intuitively appealing, such as, additional information never increases cost of an optimal decision; many are also counterintuitive, for example, dynamic programming models cannot fully compensate for intentional soft-order inflation by the buyer, even under conditions of a stable and linear order inflation pattern, in the absence of deposits

    Liner Service Network Design

    Get PDF
    corecore