34 research outputs found

    Flight Deck Centered Cost Efficient 4d Trajectory Planning

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2015Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2015Hava trafik yönetimi teknolojilerindeki mevcut sistemlerin dönüşümü göz önüne alındığında, gelecek uçuş operasyonlarının ve kokpit içi sistemlerin yeni aviyonik sistemlere ve operasyonel prosedürlere ihtiyaç duyacağını söylemek mümkündür. Özellikle adaptif algoritmalar ve gelişmiş karar destek sistemleri bu ihtiyaçların temelini oluşturmaktadır. Bu konseptlerin hayata geçirilmesi Hava Trafik Yönetimi kapsamında görevlerin ve sorumlulukların değişmesinde büyük rol oynayacaktır. En iyi karar yeri, en iyi karar zamanı ve en iyi karar veren bu bağlamda temel faktörlerdir. Örneğin; kontrolcüler hava trafiğini yönetmede yüksek derecede rol sahibi olacak ve bireysel rotalara müdahale sayısını azaltacaklardır. Pilotlar uçuş esnasında daha aktif olacak; çevreyi gözlemleme ve yönetme, seçenekleri analiz ete veya gerektiği durumda ayırma manevrası uygulama gibi önemli görevlerde daha çok görev alacaktır. Uçuş ekibinin rolündeki bu değişimler mevcut görevlerin yeniden tanımlanmasına gidilmesinin yanı sıra insan faktörü performansını da etkileyecektir. Geleceğin kokpit içi sistemlerinde uçuş ekibinin bu yeni görevleri başarıyla gerçekleştirmesini sağlayan yeni nesil cihazlar ve algoritmalar gerekecektir.  Bu tez kapsamında yapılan ilk çalışma, yeni nesil sentetik vizyon ve artırılmış gerçeklik tabanlı görselleştirme teknolojileri kullanılarak görsel kokpit içi karar destek araçları ve arayüzleri tasarımıdır. Dizayn edilen bu araçların NextGen ve SESAR 2020+ programlarında tanımlanmış gelecek uçuş operasyonlarının gereksinimlerini karşılaması amaçlanmaktadır. Bu aviyonik sistemler ile pilotların niyet paylaşımı/pazarlığı ile işbirlikçi taktiksel planlama, çözümleri alternatifleri ile birlikte tam olarak anlama/analiz etme/yorumlama ve yeni çözüm önerme gibi uçuş operasyonlarında desteklenmesi vizyonlanmıştır. Ek olarak, gerekli cevabın farkında olma, uygulama veya çarpışma önleyici sisteme otomasyon yetkisi verme gibi görevlerde de karar destek sağlanması hedeflenmiştir. Görsel karar destek sistemleri uçuş ekibinin yeni otonom sistemler ile etkileşimini ve tüm taktiksel veriyi görselleştirerek içinde bulunulan durumu veya gelişmekte olan uçuş operasyonunu anlaşılır olmasını mümkün kılmaktadır. Bu proje kapsamında iki farklı görsel yapı sunulmaktadır. Kokpitin Primary Flight Display bölgesinde yer alan sentetik vizyon ekran çifti pilotların 4D ortamda durum farkındalığı ile düşük ve yüksek seviyede taktiksel görevleri yönetmesini sağlamaktadır. SVD kısmı pilota yapay görsellik sağlamakla beraber gerekli güdüm, uçuş ve kısıtlı seviyede operasyonel bilgileri içermektedir. Tunnel-in-the-sky konsepti ile pilot, odaklanılan veya karar verilen rotayı tüneller aracılığıyla manuel olarak takip edebilir. Bununla beraber standart sentetik vizyon (sanal gerçeklik) ekranı fonksiyonlarını da kullanabilir. İrtifa ve hız bilgileri, radar frekans değerleri, harita ve yükselti bilgisi, hava koşulları gibi temel uçuş operasyonu verisi bu ekranda gösterilmektedir. 4D Operasyonel Ekranı (4DOD) operasyon durumu ile ilgili farkındalığı artırmak ve uçuş niyeti üzerindeki modifikasyonları göstermek üzere yüksek seviyede operasyonel bilgileri sağlamaktadır. Pilot, hem kendi yörüngesini kontrol edebilmekte hem de trafikteki uçaklara ait rotaları izleyebilmektedir. Aynı zamanda ileriye dönük hızlandırılmış simulasyon fonksiyonu da bulunmaktadır. Kokpitin veri bağlantısı üzerinden yer ile rota ve uçuş planı paylaşımı sürecinin yönetilmesi bu ekran aracılığıyla olmaktadır. Haptik arayüzler ile uçuş ekibi gösterilen bilgileri ve görselleri 2D+zaman ve 3D+zaman boyutunda yönetebilmektedir. Sentetik vizyon ve 4DOD ekran çiftine paralel olarak pilotun görüş hizası üzerine inşa edilmiş Head-up Display (HUD)bulunmaktadır. HUD aracılığıyla pilot benzer şekilde temel uçuş durum bilgilerini aşağıya bakma gereği duymadan izleyebilmekte, tunnel-in-the-sky konsepti sayesinde hedef yörüngeyi tüneller arasından uçmaya çalışarak takip edebilmektedir. Bu görsel karar destek sistemleri ve algoritmalarının donanım olarak entegrasyonu, Boeing 737-800 uçuş simulatörü üzerinde gerçekleşmiştir. Sentetik vizyon ve 4DOD ekran çifti Primary Flight Display (PFD) monitörleri üzerinde çizdirilmiştir. Head-up Display (HUD), kaptan pilot ile ön cam arasına yerleştirilmiştir. Özel bir film kullanılarak görüntü arkadan mini-projeksiyon cihazı aracılığıyla yansıtılmıştır. Her bir görsel karar destek sistemi simulatörün ağına bağlanmış olup veri akışını kontrol eden ve yöneten algoritmalar düzenlenmiştir. Uçuş simulatörü, Hava Trafik Kontrolü test ortamı ile birleştirilerek geliştirilen yeni nesil aviyonik konseptlerinin uçuş operasyonları üzerindeki etkileri resmedilmiştir. Hava Trafik Kontrolü test ortamı trafik ve hava durumu tasarlayıcı, Hava Trafik Kontrol ekranları ve kontrolörün davranışının benzetim çalışmalarını yapan modellerden oluşmaktadır. Test ortamı aynı zamanda ALLFT+ tabanlı geçmiş uçuşlara ait gerçek veri kullanarak önceden belirlenmiş veya düzenlenebilen senaryoların oynatılmasını sağlamaktadır. Trafik ve hava durumu tasarlayıcı modül Demand Data Repository veritabanı üzerinden beslenen havaalanı ve hava sahası kapasite bilgilerini ve Aeronautical Information Publication'dan gelen operasyonel bilgileri içermektedir. Benzer şekilde, modifiye edilmiş senaryolar veya geçmiş hava durumu bilgileri METAR verisi üzerinden aktarılmaktadır. Test ortamı günümüz hava trafik kontrol ekranları, ses ile iletişim, otonom veya karar destekli kontrol operasyonlarını ifade eden modeller aracılığı ile hem günümüz operasyonlara hem de geleceğe yönelik çalışmalara ait senaryoları koşabilmektedir.  Projenin ikinci aşaması ve ana amacı ise taktiksel 4D yörünge planlaması ve otomasyon araçları ile donatılmış uçak için "conflict resolution", ya da potansiyel çarpışma önleyici ve bunu otonom olarak yapan sistemler için teorik çerçeve tasarlanmasıdır. Yoğun trafik ortamında veya yeni rota hesaplanması gibi durumlarda yerden bağımsız, uçak üzerinde ve otonom olarak hem gerçeklenebilir, hem de maliyeti düşük rotaların üretilmesi istenmektedir. Önerilen 4D yörünge planlama metodu hem olasılıksal hem de deterministik algoritmaların yeni özelliklerini içermekle beraber iki yöntemin de başarılı taraflarını birleştirmektedir. Uçak performans modeli ise yörünge tayini için gerekli bir bileşen olup BADA 4 üzerinden sağlanmaktadır. Uçağın kinodinamik modellemesinde standart yörünge uygulamalarında kullanılan 3-serbestlik dereceli veya diğer adıyla nokta kütle hareket modeli kullanılmıştır. Bu modelde uçağın hali hazırda kendi içerisinde kararlı ve kontrol edilebilir olduğu kabul edilip, takip ettiği yörünge ile ilgilenilmektedir. Uçağa etkiyen kuvvetlerin veya uçak performansının modellenmesi EUROCONTROL'ün bir ürünü olan Base of Aircraft Data (BADA) aracılığıyla yapılmıştır. Projede son sürüm olan BADA 4 kullanılmıştır. Bu versiyon, öncekilerden farklı olarak uçağa etkiyen kuvvetleri uçağın durumları ve atmosfer koşullarına bağlı olarak parametrik ifade etmektedir. Teknik altyapısını Boeing'in sağladığı bu veritabanı, gelişmiş modellemeleri sayesinde nominal değerlerin üzerine çıkarak parametre öngörmesi ve optimizasyon gibi işlemleri yapılabilir kılmaktadır. Oluşturulan bu performans modeli yüksek-seviye hibrid uçuş kalıpları otomatları ve alçak-seviye manevra otomatlarını kapsamaktadır. Bu modellemedeki amaç, uçak hareketini tırmanma, seyir ve alçalma şeklinde üç farklı kalıp altında toplamaktır. Her bir uçuş kalıbı kendine özel manevra sekansı içermektedir. BADA 4 matematiksel modelleri aracılığıyla her bir uçuş kalıbı için tanımlı manevra sekansını düşük maliyet ile gerçekleştiren parametreler öngörülmüştür. Esasında bu problem, bir uçağın başlangıç ve bitiş olarak verilen iki nokta arasında en düşük maliyetli rotayı takip etmesi problemidir. Uçak denklemlerinin ve kısıtlamaların lineer olarak ifade edilememesi, bu problemin tek bir seferde global olarak çözülmesini zorlaştırmaktadır. Ek olarak bu modülün uçak üzerinde çalışacağı düşünülecek olursa bu hesaplamaların çok kısa zaman aralıklarında gerçekleşmesi beklenmektedir. Çok-modlu yaklaşım sayesinde kompleks olan yörünge planlama problemini global olarak çözmek yerine lokal ve düşük maliyetli yörüngeler tayin edilmektedir. Bu noktadaki dezavantaj ise yaklaşımın verdiği çözümün optimum değerden uzaklaşmasıdır.  Daha üst seviyede ise hesaplanan düşük maliyetli lokal rota parçaları oluşturan ve uzayı tarayan RRT* algoritması kullanılmıştır. RRT*,örnekleme tabanlı bir hareket planlama algoritması olup hava sahasını keşfetmeye çalışarak lokal yörünge segmentleri üzerinden ayırma yapmaktadır. İlk adım olarak uzayda bir konum örnekleyip, ardından uçuş kalıpları ve gelişmiş performans modelini kullanarak uçağı bu noktaya düşük maliyet ile getirmeye çalışmaktadır. Örneklenen konuma, mesafe olarak ağaçta hali hazırda bulunan en yakın konumdan bağlanmaya çalışılır. Bu, arama uzayının hızlı ve ilerleyerek keşfedilmesinin temelidir. Lokal maliyetlerin yanında başlangıç konumundan itibaren harcanan maliyet de hesaba katıldığı için ağaç sürekli olarak toplam maliyeti düşük olan uçuş segmenti sekanslarını üreterek büyür. Önceden belirlenmiş örnekleme sayısına ulaşıldığında algoritma durur. Kullanılan algoritma aynı zamanda belirli koşullar altında asimptotik optimalliği sağlamaktadır. Asimptotik optimallik, örnekleme sayısı sonsuza yaklaştıkça problemin optimal çözüme yakınsama özelliğidir. RRT* aynı zamanda olasılıksal bütünlüğü sağlamaktadır: Örnekleme sayısı sonsuza yaklaştıkça çözüm bulma olasılığı 1'e yakınsamaktadır. Bunlara ek olarak, örnekleme için cross-entropy yöntemi kullanılmıştır. Bu yöntem ile örnekleme problemi stokastik optimizasyon problemine dönüştürülerek hızlı bir şekilde minimum maliyetli yörünge sekansı oluşturulmuştur. Akıllı örnekleme yapılırken halihazırdaki uçuş planları kullanılmış, dolayısıyla örnekleme sayısının düşük tutulabilmesi sağlanmıştır. Standart rastgele örnekler almak yerine daha akıllı örnekleme yapmak, optimum sonuca daha çabuk ulaşılmasını sağlamıştır. Ancak, her adımda oluşturulan küme içinden ağırlıklandırması yüksek olan elit set çekildiği için hesaplama yükü artmıştır.  Proje kapsamında hem Avrupa'nın hem Amerika'nın hava trafik yönetimi konusunda yaptığı kapsamlı araştırmalar incelenmiş ve buradaki trendler takip edilmiştir. Hava trafik yönetiminde kapasiteyi artırmak üzere yer kontrolcülerinin görevlerini daha çok genel akışı yönetmesi vizyonlanmış; pilotların ise daha çok aktif rol aldığı bir dünya çizilmiştir. Pilotlara karar vermelerinde destek olacak görsel sistemler tasarlanmış, yer ile uçağın aynı anda işbirlikçi bir biçimde uçuş operasyonunu yönettiği konseptler eklenmiştir. Bunların yanında çarpışmaları gözleyen ve gerektiği durumda otonom ayırma yapabilen sistemler için algoritma tasarlanmıştır. Geleceğin hava trafik koşullaru vizyonlanarak göz önünde bulundurulmuş, önerilen yöntemin hem bugünün hem de geleceğin hava trafik yönetim sistemine katkı sağlaması amaçlanmıştır.Considering the transformation in roles of existing air traffic management technologies, future flight operations and flight deck systems will need additional avionics and operational procedures that involve adaptive algorithms and advanced decision support tools.  The first part of the thesis presents novel visual flight deck decision support tools and interfaces utilizing next generation synthetic vision and augmented reality based visualisation technologies in order to meet the requirements of the future flight operations defined in NextGen and SESAR 2020+ visions. These avionics are envisioned to aid pilots for conducting their new in-flight tasks such as; collaborative tactical planning with intent negotiation/sharing; fully understanding/analysing/interpreting solution with their alternatives and proposing modification on the solution subject to negotiation; and aware of required response, execute it or allow collision avoidance module to perform its automated response. Visual Decision Support Tools allow the flight crew to interact with new autonomous systems and provide with visual understanding on the evolving flight operation by fusing all tactical level data and visualising them. In this work, two groups of display structure have been proposed. A split head-down \textit{Synthetic Vision} screen pair aims to support the pilots in managing both low level and high level tactical tasks with fully understanding the situation in 4D. Synthetic Vision Display (SVD) side provides the pilots synthetic vision and also incorporates required additional guidance and limited operational information. 4D Operational Display (4DOD) provides higher level operational information giving building enhanced understanding on the states of the operation and results of any modification on processing flight intent. Haptic interfaces allow the flight crew to change demonstrated detail levels in both 2D+time and 3D+time. The other display, which is \textit{Head-Up-Display (HUD)}, provides pilot to efficiently operate flight operation by eliminating the need of looking to head-down screen; and aims to present all essential flight information in the pilot's forward field through augmented reality implementations. For hardware integration and experimental purposes, an integrated testbed including full replica B737-800 Flight Deck Testbed and ATM Testbed has been modified as enabling operational tests and validations of these new tools. The main purpose of this study is to provide a theoretical framework for tactical 4D-trajectory planning and conflict resolution of an aircraft equipped with novel automation tools. The proposed 4D-trajectory-planning method uses recent algorithmic advances in both probabilistic and deterministic methods to fully benefit from both approaches. We have constructed an aircraft performance model based on BADA 4 with high-level hybrid flight template automatons and low-level flight maneuver automatons. This multi-modal flight trajectory approach is utilized to generate cost-efficient local trajectory segments instead of solving complex trajectory-generation problems globally. The proposed sampling-based trajectory planning algorithm spatially explores the airspace and provides proper separation through local trajectory segments and guarantees asymptotic optimality under certain conditions. Moreover, we have integrated the cross-entropy method, which transforms the sampling problem into a stochastic optimization problem, rapidly converges on the minimum cost trajectory sequence by utilizing available flight plans, and reduces the amount of sampling. The integration of the proposed strategies lets us solve challenging, real-time in-tactical 4D-trajectory planning problems within the current and the envisioned future realm of air traffic management systems.Yüksek LisansM.Sc

    3D-in-2D Displays for ATC.

    Get PDF
    This paper reports on the efforts and accomplishments of the 3D-in-2D Displays for ATC project at the end of Year 1. We describe the invention of 10 novel 3D/2D visualisations that were mostly implemented in the Augmented Reality ARToolkit. These prototype implementations of visualisation and interaction elements can be viewed on the accompanying video. We have identified six candidate design concepts which we will further research and develop. These designs correspond with the early feasibility studies stage of maturity as defined by the NASA Technology Readiness Level framework. We developed the Combination Display Framework from a review of the literature, and used it for analysing display designs in terms of display technique used and how they are combined. The insights we gained from this framework then guided our inventions and the human-centered innovation process we use to iteratively invent. Our designs are based on an understanding of user work practices. We also developed a simple ATC simulator that we used for rapid experimentation and evaluation of design ideas. We expect that if this project continues, the effort in Year 2 and 3 will be focus on maturing the concepts and employment in a operational laboratory settings

    Review of Current State of Artificial Intelligence/Machine Learning and Other Advanced Techniques Related to Air-to-Air Collision Risk Models (CRM) in the Terminal Airspace

    Get PDF
    693KA9-20-D-00004DTFACT-14-D-00004Collision Risk Models (CRM) are used by regulatory safety agencies to determine the safe separation minima and monitor the air-to-air collision risk level of an airspace. CRMs estimate the expected number of aircraft collisions and "total" risk for a given air traffic concept-of-operation (e.g., parallel approaches). The fidelity of the models, and assumptions used in the models, are determined by the required confidence interval required for the safety analysis, the capabilities of current analytical and simulation methods, availability of empirical data sets, and the capabilities of computational resources. This paper provides an overview of the state-of-the-art CRMs for terminal area operations. Opportunities to apply recently developed artificial intelligence/machine learning (AI/ML), and data analytics methods such as analytical and rare-event simulation methods, availability of empirical data sets, and leverage available computational resources are identified

    Aeronautical Engineering: A Continuing Bibliography With Indexes

    Get PDF
    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section

    Future Transportation

    Get PDF
    Greenhouse gas (GHG) emissions associated with transportation activities account for approximately 20 percent of all carbon dioxide (co2) emissions globally, making the transportation sector a major contributor to the current global warming. This book focuses on the latest advances in technologies aiming at the sustainable future transportation of people and goods. A reduction in burning fossil fuel and technological transitions are the main approaches toward sustainable future transportation. Particular attention is given to automobile technological transitions, bike sharing systems, supply chain digitalization, and transport performance monitoring and optimization, among others

    Cooperative air traffic optimisation for minimum overall fuel usage

    Get PDF
    The objective of this research was to demonstrate that a continental-scale air traffic model, featuring cooperative user preferred trajectories (UPT), can be optimized to minimize total fuel usage. The model was based on the premise that the flight plans, i.e. routes with departure and arrival times, for all aircraft within a continental-scale region were known and their altitude and speed profiles were determined for minimum overall fuel burn, subject to conflict resolution; the resulting set of trajectories would require actions for all involved aircraft and thus be cooperative in nature. The model was also based on the premise that these flight plans would also contain information on the aircraft’s, and its corresponding airline’s, trajectory preferences in the form of UPT; preferences that did not prevent minimization of total fuel usage, or cooperative action towards it, were incorporated into the model. The research integrated air traffic and aircraft performance models around an Interior Point Optimisation technique. Each aircraft’s speed and altitude along the aircraft’s route, was treated as a free variable within aircraft performance limits; the optimisation methodology determined the speed and altitude schedule for each aircraft to ensure total fuel usage was minimum. Constraints on minimum separation, aircraft performance limits and arrival time, were also included; unexpected heading changes and deviation due to adverse weather conditions were included in the optimisation. Further, the integration utilized a means of data transfer which was also found to efficiently define separation required by air traffic; this led to the development of a more efficient form of air traffic optimization. In order to take advantage of this new form, several novel concepts were tested and used, such as fuel usage optimization via Interior Point based algorithms, hyper ellipse based definitions of air traffic separation, and flexible trajectory control node distribution to suit different purposes. Afterwards, the optimization was improved further by including three more functionalities; Base of Aircraft Data (BADA) for aircraft performance modelling, Dynamic Re-optimization to handle unpredicted air traffic changes, and Control Node Customization of trajectory profiles to cater for UPT. The final result of this research was an air traffic optimizer with several notable attributes. First is that it optimizes individual aircraft trajectories to minimize fuel usage; no fuel usage inefficiencies due to aircraft clustering. Second is that it optimizes air traffic covering a continental sized area in a time frame that makes it feasible for actual use. Lastly is that it facilitates incorporation of all forms of Air Navigation Service Provider (ANSP), Airline, and Aircraft information into the optimization process; i.e. the process is holistic and accommodate a variety of air traffic stakeholder interests. ANSP data is incorporated as a model of ground and airspace specific properties and restrictions, airline and aircrew data are incorporated as properties of customizable UPT, and individual aircraft information are incorporated as the mechanics and constraints of air traffic and its fuel usage

    Application of Strategic Planning Process with Fleet Level Analysis Methods

    Get PDF
    The goal of this work is to quantify and characterize the potential system-wide reduction of fuel consumption and corresponding CO2 emissions, resulting from the introduction of N+2 aircraft technologies and concepts into the fleet. Although NASA goals for this timeframe are referenced against a large twin aisle aircraft we consider their application across all vehicle classes of the commercial aircraft fleet, from regional jets to very large aircraft. In this work the authors describe and discuss the formulation and implementation of the fleet assessment by addressing the main analytical components: forecasting, operations allocation, fleet retirement, fleet replacement, and environmental performance modeling

    4DT generator and guidance system

    Get PDF
    This thesis describes a 4D Trajectories Generator and Guidance system. 4D trajectory is a concept that will improve the capacity, efficiency and safety of airspace. First a 4D trajectories synthetizer design is proposed. A flight plan composed by a set of waypoints, aircraft dynamics model and a set of limits and constraints are assembled into an optimal control problem. Optimal solution is found by making use of an optimal control solver which uses pseudo spectral parametrization together with a generic nonlinear programming solver. A 4D Trajectories generator is implemented as a stand-alone application and combined with a graphic user interface to give rise to 4D Trajectories Research Software (4DT RS) capable to generate, compare and test optimal trajectories. A basic Tracking & Guidance system with proportional navigation concept is developed. The system is implemented as a complementary module for the 4D trajectories research software. Simulation tests have been carried out to demonstrate the functionalities and capabilities of the 4DT RS software and guidance system. Tests cases are based on fuel and time optimization on a high-traffic commercial route. A standard departure procedure is optimized in order to reduce the noise perceived by village’s population situated near airport. The tracking & guidance module is tested with a commercial flight simulator for demonstrating the performance of the optimal trajectories generated by the 4DT RS software

    Création d’un modèle générique d’avions long-courriers pour l’optimisation des trajectoires aériennes commerciales

    Get PDF
    RÉSUMÉ : L’optimisation de trajectoires aériennes est un problème complexe soumis à de multiples contraintes de capacité, de performance et de sécurité. À l’intérieur de cette marge de manœuvre limitée, une meilleure connaissance du comportement de l’avion et des conditions atmosphériques permet de formuler de manière précise le problème d’optimisation. Un modèle générique de performance des avions, les Base of Aircraft Data (BADA), est actuellement publié par l’organisation européenne pour la sécurité de la navigation aérienne, Eurocontrol. Obtenu par régression sur des trajectoires réelles et des données de performance des constructeurs, il fournit un outil pratique pour calculer la consommation d’une trajectoire donnée. Il n’est toutefois pas assez précis sur l’ensemble de l’enveloppe de vol pour être utilisé tel quel comme modèle de l’avion du problème d’optimisation. L’objectif de ce mémoire est, à partir des BADA disponibles, de construire un nouveau modèle d’avion qui puisse être utilisé dans la formulation du problème de recherche opérationnelle. L’approche développée reprend le modèle énergétique des BADA et l’enrichit avec les connaissances actuelles dans le domaine de la dynamique du vol. À partir d’un bilan mécanique sur l’avion en vol, un système d’équations décrivant son état et son évolution est obtenu. Nous posons des hypothèses qui nous permettent de réécrire ce bilan ce sous une forme qui peut être implantée dans le logiciel Matlab/Simulink. Diverses sources de données - logiciels de simulation de vol, données du système de gestion de vol ou Flight Management System (FMS), travaux de recherche en aérodynamique et propulsion - sont utilisées par la suite pour améliorer la formulation initiale. En particulier, l’étude de la traînée aérodynamique et de la consommation moteur permettent d’agrandir le domaine de validité du modèle d’avion développé. D’abord analysé composant par composant, le modèle final est obtenu après sélection des formulations les plus adaptées au problème d’optimisation. Finalement, celui-ci est évalué sur un plan de vol opérationnel Montréal-Paris opéré par Air Canada. La comparaison des consommations de référence et calculée montre que l’erreur du modèle proposé est la moitié de l’erreur obtenue avec le modèle BADA.----------ABSTRACT : Flight path optimization remains a challenging issue due to capacity imposition, performance limitations and security requirements. Under such constraints, an improved understanding of the dynamics of the airplane and of atmospheric conditions translates into a more accurate formulation of the problem. The Base of Aircraft Data (BADA), developed and maintained by the European Organisation for the Safety of Air Navigation, Eurocontrol, is designed for use in aircraft trajectory simulations and predictions. Obtained from mathematical regressions based on actual trajectories and manufacturer’s performance data, it provides a useful tool to compute fuel consumption for a given flight path. However, this model is not accurate enough to be used for optimizing a mission trajectory from end to end. This project aims at building a new airplane model, based on the BADA, which can be usedfor the formulation of the operations research problem. The proposed methodology is based on BADA’s kinetic approach to aircraft performance modelling and it is enhanced using fundamentals of aircraft flight dynamics. A system of equations describing the state and evolution of the flying aircraft is then obtained from a balance of forces. Assumptions make it possible to rewrite it in a more practical form, which can be implemented in the Matlab/Simulink software. Various data sources, such as flight simulation softwares, flight management systems or aerodynamics and propulsion research results are subsequently used to improve the initial design. In particular, the study of aerodynamic drag and engine consumption models are used to broaden the range of validity of the developed model. A component by component analysis is then used to choose the suitable formulations for the optimization problem. Finally, the developed model is assessed using reference data obtained from a Montréal-Paris Air Canada flight. This comparison between the measured and the computed fuel consumption at cruise level shows that the error of the proposed model is half the error of the BADA model

    \u3ci\u3eThe Conference Proceedings of the 2003 Air Transport Research Society (ATRS) World Conference, Volume 5\u3c/i\u3e

    Get PDF
    UNOAI Report 03-9https://digitalcommons.unomaha.edu/facultybooks/1126/thumbnail.jp
    corecore