64,197 research outputs found

    Utilization-based delay guarantee techniques and their applications

    Get PDF
    Many real-time systems demand effective and efficient delay-guaranteed services to meet timing requirements of their applications. We note that a system provides a delay-guaranteed service if the system can ensure that each task will meet its predefined end-to-end deadline. Admission control plays a critical role in providing delayguaranteed services. The major function of admission control is to determine admissibility of a new task. A new task will be admitted into the system if the deadline of all existing tasks and the new task can be met. Admission control has to be efficient and efficient, meaning that a decision should be made quickly while admitting the maximum number of tasks. In this dissertation, we study a utilization-based admission control mechanism. Utilization-based admission control makes an admission decision based on a simple resource utilization test: A task will be admitted if the resource utilization is lower than a pre-derived safe resource utilization bound. The challenge of obtaining a safe resource utilization bound is how to perform delay analysis offline, which is the main focus of this dissertation. For this, we develop utilization-based delay guarantee techniques to render utilization-based admission control both efficient and effective, which is further confirmed with our data. We develop techniques for several systems that are of practical importance. We first consider wired networks with the Differentiated Services model, which is wellknown as its supporting scalable services in computer networks. We consider both cases of providing deterministic and statistical delay-guaranteed services in wired networks with the Differentiated Services model. We will then extend our work to wireless networks, which have become popular for both civilian and mission critical applications. The variable service capacity of a wireless link presents more of a challenge in providing delay-guaranteed services in wireless networks. Finally, we study ways to provide delayguaranteed services in component-based systems, which now serve as an important platform for developing a new generation of computer software. We show that with our utilization-based delay guarantee technique, component-based systems can provide efficient and effective delay-guaranteed services while maintaining such advantages as the reusability of components

    Performance analysis of a Master/Slave switched Ethernet for military embedded applications

    Get PDF
    Current military communication network is a generation old and is no longer effective in meeting the emerging requirements imposed by the next generation military embedded applications. A new communication network based upon Full Duplex Switched Ethernet is proposed in this paper to overcome these limitations. To allow existing military subsystems to be easily supported by a Switched Ethernet network, our proposal consists in keeping their current centralized communication scheme by using an optimized master/slave transmission control on Switched Ethernet thanks to the Flexible Time Triggered (FTT) paradigm. Our main objective is to assess the performance of such a proposal and estimate the quality of service we can expect in terms of latency. Using the Network Calculus formalism, schedulability analysis are determined. These analysis are illustrated in the case of a realistic military embedded application extracted from a real military aircraft network, to highlight the proposal's ability to support the required time constrained communications

    A Fair and Efficient Packet Scheduling Scheme for IEEE 802.16 Broadband Wireless Access Systems

    Full text link
    This paper proposes a fair and efficient QoS scheduling scheme for IEEE 802.16 BWA systems that satisfies both throughput and delay guarantee to various real and non-real time applications. The proposed QoS scheduling scheme is compared with an existing QoS scheduling scheme proposed in literature in recent past. Simulation results show that the proposed scheduling scheme can provide a tight QoS guarantee in terms of delay, delay violation rate and throughput for all types of traffic as defined in the WiMAX standard, thereby maintaining the fairness and helps to eliminate starvation of lower priority class services. Bandwidth utilization of the system and fairness index of the resources are also encountered to validate the QoS provided by our proposed scheduling scheme

    A Simple and Robust Dissemination Protocol for VANETs

    Get PDF
    Several promising applications for Vehicular Ad-hoc Networks (VANETs) exist. For most of these applications, the communication among vehicles is envisioned to be based on the broadcasting of messages. This is due to the inherent highly mobile environment and importance of these messages to vehicles nearby. To deal with broadcast communication, dissemination protocols must be defined in such a way as to (i) prevent the so-called broadcast storm problem in dense networks and (ii) deal with disconnected networks in sparse topologies. In this paper, we present a Simple and Robust Dissemination (SRD) protocol that deals with these requirements in both sparse and dense networks. Its novelty lies in its simplicity and robustness. Simplicity is achieved by considering only two states (cluster tail and non- tail) for a vehicle. Robustness is achieved by assigning message delivery responsibility to multiple vehicles in sparse networks. Our simulation results show that SRD achieves high delivery ratio and low end-to-end delay under diverse traffic conditions
    corecore