530 research outputs found

    PERFORMANCE STUDY FOR CAPILLARY MACHINE-TO-MACHINE NETWORKS

    Get PDF
    Communication technologies witness a wide and rapid pervasiveness of wireless machine-to-machine (M2M) communications. It is emerging to apply for data transfer among devices without human intervention. Capillary M2M networks represent a candidate for providing reliable M2M connectivity. In this thesis, we propose a wireless network architecture that aims at supporting a wide range of M2M applications (either real-time or non-real-time) with an acceptable QoS level. The architecture uses capillary gateways to reduce the number of devices communicating directly with a cellular network such as LTE. Moreover, the proposed architecture reduces the traffic load on the cellular network by providing capillary gateways with dual wireless interfaces. One interface is connected to the cellular network, whereas the other is proposed to communicate to the intended destination via a WiFi-based mesh backbone for cost-effectiveness. We study the performance of our proposed architecture with the aid of the ns-2 simulator. An M2M capillary network is simulated in different scenarios by varying multiple factors that affect the system performance. The simulation results measure average packet delay and packet loss to evaluate the quality-of-service (QoS) of the proposed architecture. Our results reveal that the proposed architecture can satisfy the required level of QoS with low traffic load on the cellular network. It also outperforms a cellular-based capillary M2M network and WiFi-based capillary M2M network. This implies a low cost of operation for the service provider while meeting a high-bandwidth service level agreement. In addition, we investigate how the proposed architecture behaves with different factors like the number of capillary gateways, different application traffic rates, the number of backbone routers with different routing protocols, the number of destination servers, and the data rates provided by the LTE and Wi-Fi technologies. Furthermore, the simulation results show that the proposed architecture continues to be reliable in terms of packet delay and packet loss even under a large number of nodes and high application traffic rates

    Aerial Networking for the Implementation of Cooperative Control on Small Unmanned Aerial Systems

    Get PDF
    The employment of Small Unmanned Aerial Systems (SUAS) for reconnaissance and surveillance missions is a vital capability of the United States military. Cooperative control algorithms for SUAS can enable tactical multi-vehicle configurations for communications extension, intelligent navigation, and a multitude of other applications. Past research at AFIT has designed and simulated a cooperative rover-relay algorithm for extended communications and has investigated its implementation through various modem configurations. This research explores aerial networking options for implementing cooperative control and applies them to an actual SUAS. Using Commercial Off-The-Shelf (COTS) hardware, a system was designed and flight tested to implement the rover-relay algorithm and provide a testbed system for future research in cooperative control. Two different modem configurations were designed and tested. The first modem configuration was demonstrated through a series of ground and flight tests to successfully relay autopilot commands and telemetry between a ground station and a rover aircraft through a relay aircraft. This configuration effectively doubles the effective range of the rover system to 1.2 miles, together with an algorithm that autonomously navigates the relay aircraft to an optimal location. Secondly, a mesh network was configured and tested. This configuration successfully relayed aircraft telemetry to the ground station from each vehicle in the network. However, the network suffered from low throughput, which limited autopilot functionality, such as updating navigation waypoints to each aircraft. The results suggest the system be updated with more capable modems in a mesh configuration to broaden the possibilities for future research in cooperative applications

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Performance analysis and application development of hybrid WiMAX-WiFi IP video surveillance systems

    Get PDF
    Traditional Closed Circuit Television (CCTV) analogue cameras installed in buildings and other areas of security interest necessitates the use of cable lines. However, analogue systems are limited by distance; and storing analogue data requires huge space or bandwidth. Wired systems are also prone to vandalism, they cannot be installed in a hostile terrain and in heritage sites, where cabling would distort original design. Currently, there is a paradigm shift towards wireless solutions (WiMAX, Wi-Fi, 3G, 4G) to complement and in some cases replace the wired system. A wireless solution of the Fourth-Generation Surveillance System (4GSS) has been proposed in this thesis. It is a hybrid WiMAX-WiFi video surveillance system. The performance analysis of the hybrid WiMAX-WiFi is compared with the conventional WiMAX surveillance models. The video surveillance models and the algorithm that exploit the advantages of both WiMAX and Wi-Fi for scenarios of fixed and mobile wireless cameras have been proposed, simulated and compared with the mathematical/analytical models. The hybrid WiMAX-WiFi video surveillance model has been extended to include a Wireless Mesh configuration on the Wi-Fi part, to improve the scalability and reliability. A performance analysis for hybrid WiMAX-WiFi system with an appropriate Mobility model has been considered for the case of mobile cameras. A security software application for mobile smartphones that sends surveillance images to either local or remote servers has been developed. The developed software has been tested, evaluated and deployed in low bandwidth Wi-Fi wireless network environments. WiMAX is a wireless metropolitan access network technology that provides broadband services to the connected customers. Major modules and units of WiMAX include the Customer Provided Equipment (CPE), the Access Service Network (ASN) which consist one or more Base Stations (BS) and the Connectivity Service Network (CSN). Various interfaces exist between each unit and module. WiMAX is based on the IEEE 802.16 family of standards. Wi-Fi, on the other hand, is a wireless access network operating in the local area network; and it is based on the IEEE 802.11 standards

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Communication and Control in Collaborative UAVs: Recent Advances and Future Trends

    Full text link
    The recent progress in unmanned aerial vehicles (UAV) technology has significantly advanced UAV-based applications for military, civil, and commercial domains. Nevertheless, the challenges of establishing high-speed communication links, flexible control strategies, and developing efficient collaborative decision-making algorithms for a swarm of UAVs limit their autonomy, robustness, and reliability. Thus, a growing focus has been witnessed on collaborative communication to allow a swarm of UAVs to coordinate and communicate autonomously for the cooperative completion of tasks in a short time with improved efficiency and reliability. This work presents a comprehensive review of collaborative communication in a multi-UAV system. We thoroughly discuss the characteristics of intelligent UAVs and their communication and control requirements for autonomous collaboration and coordination. Moreover, we review various UAV collaboration tasks, summarize the applications of UAV swarm networks for dense urban environments and present the use case scenarios to highlight the current developments of UAV-based applications in various domains. Finally, we identify several exciting future research direction that needs attention for advancing the research in collaborative UAVs

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks
    corecore