1,106 research outputs found

    Subjective quality study of adaptive streaming of monoscopic and stereoscopic video

    Get PDF
    Nowadays, HTTP adaptive streaming (HAS) has become a reliable distribution technology offering significant advantages in terms of both user perceived Quality of Experience (QoE) and resource utilization for content and network service providers. By trading-off the video quality, HAS is able to adapt to the available bandwidth and display requirements so that it can deliver the video content to a variety of devices over the Internet. However, until now there is not enough knowledge of how the adaptation techniques affect the end user's visual experience. Therefore, this paper presents a comparative analysis of different bitrate adaptation strategies in adaptive streaming of monoscopic and stereoscopic video. This has been done through a subjective experiment of testing the end-user response to the video quality variations, considering the visual comfort issue. The experimental outcomes have made a good insight into the factors that can influence on the QoE of different adaptation strategies

    Compression and Subjective Quality Assessment of 3D Video

    Get PDF
    In recent years, three-dimensional television (3D TV) has been broadly considered as the successor to the existing traditional two-dimensional television (2D TV) sets. With its capability of offering a dynamic and immersive experience, 3D video (3DV) is expected to expand conventional video in several applications in the near future. However, 3D content requires more than a single view to deliver the depth sensation to the viewers and this, inevitably, increases the bitrate compared to the corresponding 2D content. This need drives the research trend in video compression field towards more advanced and more efficient algorithms. Currently, the Advanced Video Coding (H.264/AVC) is the state-of-the-art video coding standard which has been developed by the Joint Video Team of ISO/IEC MPEG and ITU-T VCEG. This codec has been widely adopted in various applications and products such as TV broadcasting, video conferencing, mobile TV, and blue-ray disc. One important extension of H.264/AVC, namely Multiview Video Coding (MVC) was an attempt to multiple view compression by taking into consideration the inter-view dependency between different views of the same scene. This codec H.264/AVC with its MVC extension (H.264/MVC) can be used for encoding either conventional stereoscopic video, including only two views, or multiview video, including more than two views. In spite of the high performance of H.264/MVC, a typical multiview video sequence requires a huge amount of storage space, which is proportional to the number of offered views. The available views are still limited and the research has been devoted to synthesizing an arbitrary number of views using the multiview video and depth map (MVD). This process is mandatory for auto-stereoscopic displays (ASDs) where many views are required at the viewer side and there is no way to transmit such a relatively huge number of views with currently available broadcasting technology. Therefore, to satisfy the growing hunger for 3D related applications, it is mandatory to further decrease the bitstream by introducing new and more efficient algorithms for compressing multiview video and depth maps. This thesis tackles the 3D content compression targeting different formats i.e. stereoscopic video and depth-enhanced multiview video. Stereoscopic video compression algorithms introduced in this thesis mostly focus on proposing different types of asymmetry between the left and right views. This means reducing the quality of one view compared to the other view aiming to achieve a better subjective quality against the symmetric case (the reference) and under the same bitrate constraint. The proposed algorithms to optimize depth-enhanced multiview video compression include both texture compression schemes as well as depth map coding tools. Some of the introduced coding schemes proposed for this format include asymmetric quality between the views. Knowing that objective metrics are not able to accurately estimate the subjective quality of stereoscopic content, it is suggested to perform subjective quality assessment to evaluate different codecs. Moreover, when the concept of asymmetry is introduced, the Human Visual System (HVS) performs a fusion process which is not completely understood. Therefore, another important aspect of this thesis is conducting several subjective tests and reporting the subjective ratings to evaluate the perceived quality of the proposed coded content against the references. Statistical analysis is carried out in the thesis to assess the validity of the subjective ratings and determine the best performing test cases

    Web-based Stereoscopic Collaboration for Medical Visualization

    Get PDF
    Medizinische Volumenvisualisierung ist ein wertvolles Werkzeug zur Betrachtung von Volumen- daten in der medizinischen Praxis und Lehre. Eine interaktive, stereoskopische und kollaborative Darstellung in Echtzeit ist notwendig, um die Daten vollstaĢˆndig und im Detail verstehen zu koĢˆnnen. Solche Visualisierung von hochaufloĢˆsenden Daten ist jedoch wegen hoher Hardware- Anforderungen fast nur an speziellen Visualisierungssystemen moĢˆglich. Remote-Visualisierung wird verwendet, um solche Visualisierung peripher nutzen zu koĢˆnnen. Dies benoĢˆtigt jedoch fast immer komplexe Software-Deployments, wodurch eine universelle ad-hoc Nutzbarkeit erschwert wird. Aus diesem Sachverhalt ergibt sich folgende Hypothese: Ein hoch performantes Remote- Visualisierungssystem, welches fuĢˆr Stereoskopie und einfache Benutzbarkeit spezialisiert ist, kann fuĢˆr interaktive, stereoskopische und kollaborative medizinische Volumenvisualisierung genutzt werden. Die neueste Literatur uĢˆber Remote-Visualisierung beschreibt Anwendungen, welche nur reine Webbrowser benoĢˆtigen. Allerdings wird bei diesen kein besonderer Schwerpunkt auf die perfor- mante Nutzbarkeit von jedem Teilnehmer gesetzt, noch die notwendige Funktion bereitgestellt, um mehrere stereoskopische PraĢˆsentationssysteme zu bedienen. Durch die Bekanntheit von Web- browsern, deren einfach Nutzbarkeit und weite Verbreitung hat sich folgende spezifische Frage ergeben: KoĢˆnnen wir ein System entwickeln, welches alle Aspekte unterstuĢˆtzt, aber nur einen reinen Webbrowser ohne zusaĢˆtzliche Software als Client benoĢˆtigt? Ein Proof of Concept wurde durchgefuĢˆhrt um die Hypothese zu verifizieren. Dazu gehoĢˆrte eine Prototyp-Entwicklung, deren praktische Anwendung, deren Performanzmessung und -vergleich. Der resultierende Prototyp (CoWebViz) ist eines der ersten Webbrowser basierten Systeme, welches fluĢˆssige und interaktive Remote-Visualisierung in Realzeit und ohne zusaĢˆtzliche Soft- ware ermoĢˆglicht. Tests und Vergleiche zeigen, dass der Ansatz eine bessere Performanz hat als andere aĢˆhnliche getestete Systeme. Die simultane Nutzung verschiedener stereoskopischer PraĢˆsen- tationssysteme mit so einem einfachen Remote-Visualisierungssystem ist zur Zeit einzigartig. Die Nutzung fuĢˆr die normalerweise sehr ressourcen-intensive stereoskopische und kollaborative Anatomieausbildung, gemeinsam mit interkontinentalen Teilnehmern, zeigt die Machbarkeit und den vereinfachenden Charakter des Ansatzes. Die Machbarkeit des Ansatzes wurde auch durch die erfolgreiche Nutzung fuĢˆr andere AnwendungsfaĢˆlle gezeigt, wie z.B. im Grid-computing und in der Chirurgie

    QoE Enhancement for Stereoscopic 3DVideo Quality Based on Depth and Color Transmission over IP Networks: A Review

    Get PDF
    In this review paper we focus on the enhancement of Quality of Experience (QoE) for stereoscopic 3D video based on depth information. We focus on stereoscopic video format because it takes less bandwidth than other format when 3D video is transmitted over an error channel but it is easily affected by the network parameters such as packets loss, delay and jitter. The packet loss on 3D video has more impact in the depth information than other 3D video factors such as comfort, motion, disparity and discomfort. The packet loss on depth information causes undesired effect on color and depth maps. Therefore, in order to minimize quality degradation, the application of frame loss concealment technique is preferred. This technique is expected to improve the QoE for end users. In this paper we will also review 3D video factors and their challenges, methods of measuring the QOE, algorithms used for packets loss recovery.

    Simultaneous 2D and 3D Video Rendering

    Get PDF
    The representation of stereoscopic video on a display is typically enabled either by using active shutter or polarizing viewing glasses in the television sets and displays available for end users. It is likely that in some usage situations some viewers do not wear viewing glasses at all times and hence it would be desirable if the stereoscopic video content could be tuned in the rendering device in such a manner that it could be simultaneously watched with and without viewing glasses with an acceptable quality. In this thesis, a novel video rendering technique is proposed and implemented in the post-processing stage which enables good quality both stereoscopic and traditional 2D video perception of the same content. This has been accomplished by manipulating of one view in the stereoscopic video by making it more similar to the other view in order to reduce the ghosting artifact perceived when the content is watched without viewing glasses while stereoscopic perception is maintained. The proposed technique includes three steps: disparity selection, contrast adjustment, and low-pass-filtering. Through an extensive series of subjective tests, the proposed approach has been evaluated to show that stereoscopic content can be viewed without glasses with an acceptable quality. The proposed methods resulted in a lower bitrate stereoscopic video stream requiring a smaller bandwidth for broadcasting

    The matrix revisited: A critical assessment of virtual reality technologies for modeling, simulation, and training

    Get PDF
    A convergence of affordable hardware, current events, and decades of research have advanced virtual reality (VR) from the research lab into the commercial marketplace. Since its inception in the 1960s, and over the next three decades, the technology was portrayed as a rarely used, high-end novelty for special applications. Despite the high cost, applications have expanded into defense, education, manufacturing, and medicine. The promise of VR for entertainment arose in the early 1990\u27s and by 2016 several consumer VR platforms were released. With VR now accessible in the home and the isolationist lifestyle adopted due to the COVID-19 global pandemic, VR is now viewed as a potential tool to enhance remote education. Drawing upon over 17 years of experience across numerous VR applications, this dissertation examines the optimal use of VR technologies in the areas of visualization, simulation, training, education, art, and entertainment. It will be demonstrated that VR is well suited for education and training applications, with modest advantages in simulation. Using this context, the case is made that VR can play a pivotal role in the future of education and training in a globally connected world

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 338)

    Get PDF
    This bibliography lists 139 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during June 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance
    • ā€¦
    corecore