1,639 research outputs found

    Parkinson’s Disease Rehabilitation: Effectiveness Approaches and New Perspectives

    Get PDF
    Parkinson’s disease has been considered one of the most important and common neurodegenerative diseases in the world. Its motor and nonmotor signs determine a huge functional loss, leading the individuals to lose their independence. Although the treatment requires a pharmacological approach, physical therapy has confirmed its importance in this process. Today, neurorehabilitation is indispensable to increase many of the cardinal signs of the disease. Using traditional or technological approaches, physical therapy has reached good results in improving motor and nonmotor functions, as well as the quality of life of Parkinsonians. However, it is important to develop and to fortify the physical therapy approach so that we can provide stronger evidence about our practice

    Potential of Whole-Body Vibration in Parkinson's Disease:A Systematic Review and Meta-Analysis of Human and Animal Studies

    Get PDF
    SIMPLE SUMMARY: Exercise has shown to have a positive impact on both motor and non-motor functions in Parkinson’s Disease patients. However, particularly in later stages of the disease, reduced cognitive function and motor capacity may lead to an inability to stay physically active. Therefore, alternative strategies for patients with Parkinson’s Disease are necessary to minimize burden for patients, their families and public health care. Whole-Body Vibration could be such an alternative. Whole-Body Vibration is an exercise or treatment method in which subjects are exposed to a mechanical vibration while sitting, standing or exercising on a vibrating platform. Whole-Body Vibration is currently used for physiotherapy, sports and rehabilitation purposes. Whole-Body Vibration treatment is interesting because it affects both the body and brain. The potential of Whole-Body Vibration for, specifically, Parkinson’s Disease patients should be clarified for further application. For this purpose, we conducted an extensive systematic review of the articles investigating the effects of Whole-Body Vibrations (1) on animals and humans with Parkinson’s Disease and (2) on neuropathological Parkinson’s Disease mechanisms. The results show some potential of Whole-Body Vibration for Parkinson’s Disease patients. The recommendations provided by this review can be used by researchers and rehabilitative practitioners implementing Whole-Body Vibration as a treatment for Parkinson’s Disease patients. ABSTRACT: (1) Background: When the severity of Parkinson’s Disease (PD) increases, patients often have difficulties in performing exercises. Whole-Body Vibration (WBV) may be a suitable alternative. This systematic review aims to clarify if WBV shows potential as rehabilitative therapy for PD patients. (2) Methods: We searched several databases for controlled trials investigating the effects of WBV (1) on PD populations and (2) PD neuropathological mechanisms. We included both human and animal studies and performed meta-analyses. (3) Results: The studies on PD populations (14 studies) show an overall significant, but small, effect in favor of WBV (Hedges’ g = 0.28), for which the effects on stability (Hedges’ g = 0.39) and balance (Hedges’ g = 0.30) are the most prominent. The studies on the neuropathological mechanisms (18 studies) show WBV effects on neuroinflammation (Hedges’ g = –1.12) and several specific WBV effects on neurotransmitter systems, growth factors, neurogenesis, synaptic plasticity and oxidative stress. (4) Conclusions: The effects of WBV on human PD patients remains inconclusive. Nevertheless, WBV protocols with sufficient duration (≥3 weeks), session frequency (≥3 sessions/week) and vibration frequency (≥20 Hz) show potential as a treatment method, especially for motor function. The potential of WBV for PD patients is confirmed by the effects on the neuropathological mechanisms in mostly non-PD populations. We recommend high-quality future studies on both PD patients and PD mouse models to optimize WBV protocols and to examine the neuropathological mechanisms in PD populations

    Human Health Engineering Volume II

    Get PDF
    In this Special Issue on “Human Health Engineering Volume II”, we invited submissions exploring recent contributions to the field of human health engineering, i.e., technology for monitoring the physical or mental health status of individuals in a variety of applications. Contributions could focus on sensors, wearable hardware, algorithms, or integrated monitoring systems. We organized the different papers according to their contributions to the main parts of the monitoring and control engineering scheme applied to human health applications, namely papers focusing on measuring/sensing physiological variables, papers highlighting health-monitoring applications, and examples of control and process management applications for human health. In comparison to biomedical engineering, we envision that the field of human health engineering will also cover applications for healthy humans (e.g., sports, sleep, and stress), and thus not only contribute to the development of technology for curing patients or supporting chronically ill people, but also to more general disease prevention and optimization of human well-being
    • …
    corecore