203 research outputs found

    EyeSpot: leveraging gaze to protect private text content on mobile devices from shoulder surfing

    Get PDF
    As mobile devices allow access to an increasing amount of private data, using them in public can potentially leak sensitive information through shoulder surfing. This includes personal private data (e.g., in chat conversations) and business-related content (e.g., in emails). Leaking the former might infringe on users’ privacy, while leaking the latter is considered a breach of the EU’s General Data Protection Regulation as of May 2018. This creates a need for systems that protect sensitive data in public. We introduce EyeSpot, a technique that displays content through a spot that follows the user’s gaze while hiding the rest of the screen from an observer’s view through overlaid masks. We explore different configurations for EyeSpot in a user study in terms of users’ reading speed, text comprehension, and perceived workload. While our system is a proof of concept, we identify crystallized masks as a promising design candidate for further evaluation with regard to the security of the system in a shoulder surfing scenario

    The Weight of User Decision Making During Online Interactions - Planning an Experiment

    Get PDF
    This paper lays out the design of a research study, using eye tracking technology, to measure participant cognitive load when encountering decision constructs during webpage interactions. It elaborates and improves on a pilot study that was used to test the experiment design. Cognitive load is discussed in detail, in both physiological and subjective terms, as well as techniques to capture participants’ thoughts and feelings immediately after the experiment. This mixed method approach will generate a more holistic comprehension of participants’ decision making and their rationale; and hopefully, improve information systems design ethics

    Watching People Making Decisions: A Gogglebox on Online Consumer Interaction

    Get PDF
    This paper presents a research study, using eye tracking technology, to measure participant cognitive load when encountering micro-decision. It elaborates and improves on a pilot study that was used to test the experiment design. Prior research that led to a taxonomy of decision constructs faced in online transactional processes is discussed. The main findings relate to participants’ subjective cognitive load and task error rates

    Workload-aware systems and interfaces for cognitive augmentation

    Get PDF
    In today's society, our cognition is constantly influenced by information intake, attention switching, and task interruptions. This increases the difficulty of a given task, adding to the existing workload and leading to compromised cognitive performances. The human body expresses the use of cognitive resources through physiological responses when confronted with a plethora of cognitive workload. This temporarily mobilizes additional resources to deal with the workload at the cost of accelerated mental exhaustion. We predict that recent developments in physiological sensing will increasingly create user interfaces that are aware of the user’s cognitive capacities, hence able to intervene when high or low states of cognitive workload are detected. In this thesis, we initially focus on determining opportune moments for cognitive assistance. Subsequently, we investigate suitable feedback modalities in a user-centric design process which are desirable for cognitive assistance. We present design requirements for how cognitive augmentation can be achieved using interfaces that sense cognitive workload. We then investigate different physiological sensing modalities to enable suitable real-time assessments of cognitive workload. We provide empirical evidence that the human brain is sensitive to fluctuations in cognitive resting states, hence making cognitive effort measurable. Firstly, we show that electroencephalography is a reliable modality to assess the mental workload generated during the user interface operation. Secondly, we use eye tracking to evaluate changes in eye movements and pupil dilation to quantify different workload states. The combination of machine learning and physiological sensing resulted in suitable real-time assessments of cognitive workload. The use of physiological sensing enables us to derive when cognitive augmentation is suitable. Based on our inquiries, we present applications that regulate cognitive workload in home and work settings. We deployed an assistive system in a field study to investigate the validity of our derived design requirements. Finding that workload is mitigated, we investigated how cognitive workload can be visualized to the user. We present an implementation of a biofeedback visualization that helps to improve the understanding of brain activity. A final study shows how cognitive workload measurements can be used to predict the efficiency of information intake through reading interfaces. Here, we conclude with use cases and applications which benefit from cognitive augmentation. This thesis investigates how assistive systems can be designed to implicitly sense and utilize cognitive workload for input and output. To do so, we measure cognitive workload in real-time by collecting behavioral and physiological data from users and analyze this data to support users through assistive systems that adapt their interface according to the currently measured workload. Our overall goal is to extend new and existing context-aware applications by the factor cognitive workload. We envision Workload-Aware Systems and Workload-Aware Interfaces as an extension in the context-aware paradigm. To this end, we conducted eight research inquiries during this thesis to investigate how to design and create workload-aware systems. Finally, we present our vision of future workload-aware systems and workload-aware interfaces. Due to the scarce availability of open physiological data sets, reference implementations, and methods, previous context-aware systems were limited in their ability to utilize cognitive workload for user interaction. Together with the collected data sets, we expect this thesis to pave the way for methodical and technical tools that integrate workload-awareness as a factor for context-aware systems.Tagtäglich werden unsere kognitiven Fähigkeiten durch die Verarbeitung von unzähligen Informationen in Anspruch genommen. Dies kann die Schwierigkeit einer Aufgabe durch mehr oder weniger Arbeitslast beeinflussen. Der menschliche Körper drückt die Nutzung kognitiver Ressourcen durch physiologische Reaktionen aus, wenn dieser mit kognitiver Arbeitsbelastung konfrontiert oder überfordert wird. Dadurch werden weitere Ressourcen mobilisiert, um die Arbeitsbelastung vorübergehend zu bewältigen. Wir prognostizieren, dass die derzeitige Entwicklung physiologischer Messverfahren kognitive Leistungsmessungen stets möglich machen wird, um die kognitive Arbeitslast des Nutzers jederzeit zu messen. Diese sind in der Lage, einzugreifen wenn eine zu hohe oder zu niedrige kognitive Belastung erkannt wird. Wir konzentrieren uns zunächst auf die Erkennung passender Momente für kognitive Unterstützung welche sich der gegenwärtigen kognitiven Arbeitslast bewusst sind. Anschließend untersuchen wir in einem nutzerzentrierten Designprozess geeignete Feedbackmechanismen, die zur kognitiven Assistenz beitragen. Wir präsentieren Designanforderungen, welche zeigen wie Schnittstellen eine kognitive Augmentierung durch die Messung kognitiver Arbeitslast erreichen können. Anschließend untersuchen wir verschiedene physiologische Messmodalitäten, welche Bewertungen der kognitiven Arbeitsbelastung in Realzeit ermöglichen. Zunächst validieren wir empirisch, dass das menschliche Gehirn auf kognitive Arbeitslast reagiert. Es zeigt sich, dass die Ableitung der kognitiven Arbeitsbelastung über Elektroenzephalographie eine geeignete Methode ist, um den kognitiven Anspruch neuartiger Assistenzsysteme zu evaluieren. Anschließend verwenden wir Eye-Tracking, um Veränderungen in den Augenbewegungen und dem Durchmesser der Pupille unter verschiedenen Intensitäten kognitiver Arbeitslast zu bewerten. Das Anwenden von maschinellem Lernen führt zu zuverlässigen Echtzeit-Bewertungen kognitiver Arbeitsbelastung. Auf der Grundlage der bisherigen Forschungsarbeiten stellen wir Anwendungen vor, welche die Kognition im häuslichen und beruflichen Umfeld unterstützen. Die physiologischen Messungen stellen fest, wann eine kognitive Augmentierung sich als günstig erweist. In einer Feldstudie setzen wir ein Assistenzsystem ein, um die erhobenen Designanforderungen zur Reduktion kognitiver Arbeitslast zu validieren. Unsere Ergebnisse zeigen, dass die Arbeitsbelastung durch den Einsatz von Assistenzsystemen reduziert wird. Im Anschluss untersuchen wir, wie kognitive Arbeitsbelastung visualisiert werden kann. Wir stellen eine Implementierung einer Biofeedback-Visualisierung vor, die das Nutzerverständnis zum Verlauf und zur Entstehung von kognitiver Arbeitslast unterstützt. Eine abschließende Studie zeigt, wie Messungen kognitiver Arbeitslast zur Vorhersage der aktuellen Leseeffizienz benutzt werden können. Wir schließen hierbei mit einer Reihe von Applikationen ab, welche sich kognitive Arbeitslast als Eingabe zunutze machen. Die vorliegende wissenschaftliche Arbeit befasst sich mit dem Design von Assistenzsystemen, welche die kognitive Arbeitslast der Nutzer implizit erfasst und diese bei der Durchführung alltäglicher Aufgaben unterstützt. Dabei werden physiologische Daten erfasst, um Rückschlüsse in Realzeit auf die derzeitige kognitive Arbeitsbelastung zu erlauben. Anschließend werden diese Daten analysiert, um dem Nutzer strategisch zu assistieren. Das Ziel dieser Arbeit ist die Erweiterung neuartiger und bestehender kontextbewusster Benutzerschnittstellen um den Faktor kognitive Arbeitslast. Daher werden in dieser Arbeit arbeitslastbewusste Systeme und arbeitslastbewusste Benutzerschnittstellen als eine zusätzliche Dimension innerhalb des Paradigmas kontextbewusster Systeme präsentiert. Wir stellen acht Forschungsstudien vor, um die Designanforderungen und die Implementierung von kognitiv arbeitslastbewussten Systemen zu untersuchen. Schließlich stellen wir unsere Vision von zukünftigen kognitiven arbeitslastbewussten Systemen und Benutzerschnittstellen vor. Durch die knappe Verfügbarkeit öffentlich zugänglicher Datensätze, Referenzimplementierungen, und Methoden, waren Kontextbewusste Systeme in der Auswertung kognitiver Arbeitslast bezüglich der Nutzerinteraktion limitiert. Ergänzt durch die in dieser Arbeit gesammelten Datensätze erwarten wir, dass diese Arbeit den Weg für methodische und technische Werkzeuge ebnet, welche kognitive Arbeitslast als Faktor in das Kontextbewusstsein von Computersystemen integriert

    Work, aging, mental fatigue, and eye movement dynamics

    Get PDF

    An enactive approach to perceptual augmentation in mobility

    Get PDF
    Event predictions are an important constituent of situation awareness, which is a key objective for many applications in human-machine interaction, in particular in driver assistance. This work focuses on facilitating event predictions in dynamic environments. Its primary contributions are 1) the theoretical development of an approach for enabling people to expand their sampling and understanding of spatiotemporal information, 2) the introduction of exemplary systems that are guided by this approach, 3) the empirical investigation of effects functional prototypes of these systems have on human behavior and safety in a range of simulated road traffic scenarios, and 4) a connection of the investigated approach to work on cooperative human-machine systems. More specific contents of this work are summarized as follows: The first part introduces several challenges for the formation of situation awareness as a requirement for safe traffic participation. It reviews existing work on these challenges in the domain of driver assistance, resulting in an identification of the need to better inform drivers about dynamically changing aspects of a scene, including event probabilities, spatial and temporal distances, as well as a suggestion to expand the scope of assistance systems to start informing drivers about relevant scene elements at an early stage. Novel forms of assistance can be guided by different fundamental approaches that target either replacement, distribution, or augmentation of driver competencies. A subsequent differentiation of these approaches concludes that an augmentation-guided paradigm, characterized by an integration of machine capabilities into human feedback loops, can be advantageous for tasks that rely on active user engagement, the preservation of awareness and competence, and the minimization of complexity in human- machine interaction. Consequently, findings and theories about human sensorimotor processes are connected to develop an enactive approach that is consistent with an augmentation perspective on human-machine interaction. The approach is characterized by enabling drivers to exercise new sensorimotor processes through which safety-relevant spatiotemporal information may be sampled. In the second part of this work, a concept and functional prototype for augmenting the perception of traffic dynamics is introduced as a first example for applying principles of this enactive approach. As a loose expression of functional biomimicry, the prototype utilizes a tactile inter- face that communicates temporal distances to potential hazards continuously through stimulus intensity. In a driving simulator study, participants quickly gained an intuitive understanding of the assistance without instructions and demonstrated higher driving safety in safety-critical highway scenarios. But this study also raised new questions such as whether benefits are due to a continuous time-intensity encoding and whether utility generalizes to intersection scenarios or highway driving with low criticality events. Effects of an expanded assistance prototype with lane-independent risk assessment and an option for binary signaling were thus investigated in a separate driving simulator study. Subjective responses confirmed quick signal understanding and a perception of spatial and temporal stimulus characteristics. Surprisingly, even for a binary assistance variant with a constant intensity level, participants reported perceiving a danger-dependent variation in stimulus intensity. They further felt supported by the system in the driving task, especially in difficult situations. But in contrast to the first study, this support was not expressed by changes in driving safety, suggesting that perceptual demands of the low criticality scenarios could be satisfied by existing driver capabilities. But what happens if such basic capabilities are impaired, e.g., due to poor visibility conditions or other situations that introduce perceptual uncertainty? In a third driving simulator study, the driver assistance was employed specifically in such ambiguous situations and produced substantial safety advantages over unassisted driving. Additionally, an assistance variant that adds an encoding of spatial uncertainty was investigated in these scenarios. Participants had no difficulties to understand and utilize this added signal dimension to improve safety. Despite being inherently less informative than spatially precise signals, users rated uncertainty-encoding signals as equally useful and satisfying. This appreciation for transparency of variable assistance reliability is a promising indicator for the feasibility of an adaptive trust calibration in human-machine interaction and marks one step towards a closer integration of driver and vehicle capabilities. A complementary step on the driver side would be to increase transparency about the driver’s mental states and thus allow for mutual adaptation. The final part of this work discusses how such prerequisites of cooperation may be achieved by monitoring mental state correlates observable in human behavior, especially in eye movements. Furthermore, the outlook for an addition of cooperative features also raises new questions about the bounds of identity as well as practical consequences of human-machine systems in which co-adapting agents may exercise sensorimotor processes through one another.Die Vorhersage von Ereignissen ist ein Bestandteil des Situationsbewusstseins, dessen Unterstützung ein wesentliches Ziel diverser Anwendungen im Bereich Mensch-Maschine Interaktion ist, insbesondere in der Fahrerassistenz. Diese Arbeit zeigt Möglichkeiten auf, Menschen bei Vorhersagen in dynamischen Situationen im Straßenverkehr zu unterstützen. Zentrale Beiträge der Arbeit sind 1) eine theoretische Auseinandersetzung mit der Aufgabe, die menschliche Wahrnehmung und das Verständnis von raum-zeitlichen Informationen im Straßenverkehr zu erweitern, 2) die Einführung beispielhafter Systeme, die aus dieser Betrachtung hervorgehen, 3) die empirische Untersuchung der Auswirkungen dieser Systeme auf das Nutzerverhalten und die Fahrsicherheit in simulierten Verkehrssituationen und 4) die Verknüpfung der untersuchten Ansätze mit Arbeiten an kooperativen Mensch-Maschine Systemen. Die Arbeit ist in drei Teile gegliedert: Der erste Teil stellt einige Herausforderungen bei der Bildung von Situationsbewusstsein vor, welches für die sichere Teilnahme am Straßenverkehr notwendig ist. Aus einem Vergleich dieses Überblicks mit früheren Arbeiten zeigt sich, dass eine Notwendigkeit besteht, Fahrer besser über dynamische Aspekte von Fahrsituationen zu informieren. Dies umfasst unter anderem Ereigniswahrscheinlichkeiten, räumliche und zeitliche Distanzen, sowie eine frühere Signalisierung relevanter Elemente in der Umgebung. Neue Formen der Assistenz können sich an verschiedenen grundlegenden Ansätzen der Mensch-Maschine Interaktion orientieren, die entweder auf einen Ersatz, eine Verteilung oder eine Erweiterung von Fahrerkompetenzen abzielen. Die Differenzierung dieser Ansätze legt den Schluss nahe, dass ein von Kompetenzerweiterung geleiteter Ansatz für die Bewältigung jener Aufgaben von Vorteil ist, bei denen aktiver Nutzereinsatz, die Erhaltung bestehender Kompetenzen und Situationsbewusstsein gefordert sind. Im Anschluss werden Erkenntnisse und Theorien über menschliche sensomotorische Prozesse verknüpft, um einen enaktiven Ansatz der Mensch-Maschine Interaktion zu entwickeln, der einer erweiterungsgeleiteten Perspektive Rechnung trägt. Dieser Ansatz soll es Fahrern ermöglichen, sicherheitsrelevante raum-zeitliche Informationen über neue sensomotorische Prozesse zu erfassen. Im zweiten Teil der Arbeit wird ein Konzept und funktioneller Prototyp zur Erweiterung der Wahrnehmung von Verkehrsdynamik als ein erstes Beispiel zur Anwendung der Prinzipien dieses enaktiven Ansatzes vorgestellt. Dieser Prototyp nutzt vibrotaktile Aktuatoren zur Kommunikation von Richtungen und zeitlichen Distanzen zu möglichen Gefahrenquellen über die Aktuatorposition und -intensität. Teilnehmer einer Fahrsimulationsstudie waren in der Lage, in kurzer Zeit ein intuitives Verständnis dieser Assistenz zu entwickeln, ohne vorher über die Funktionalität unterrichtet worden zu sein. Sie zeigten zudem ein erhöhtes Maß an Fahrsicherheit in kritischen Verkehrssituationen. Doch diese Studie wirft auch neue Fragen auf, beispielsweise, ob der Sicherheitsgewinn auf kontinuierliche Distanzkodierung zurückzuführen ist und ob ein Nutzen auch in weiteren Szenarien vorliegen würde, etwa bei Kreuzungen und weniger kritischem longitudinalen Verkehr. Um diesen Fragen nachzugehen, wurden Effekte eines erweiterten Prototypen mit spurunabhängiger Kollisionsprädiktion, sowie einer Option zur binären Kommunikation möglicher Kollisionsrichtungen in einer weiteren Fahrsimulatorstudie untersucht. Auch in dieser Studie bestätigen die subjektiven Bewertungen ein schnelles Verständnis der Signale und eine Wahrnehmung räumlicher und zeitlicher Signalkomponenten. Überraschenderweise berichteten Teilnehmer größtenteils auch nach der Nutzung einer binären Assistenzvariante, dass sie eine gefahrabhängige Variation in der Intensität von taktilen Stimuli wahrgenommen hätten. Die Teilnehmer fühlten sich mit beiden Varianten in der Fahraufgabe unterstützt, besonders in Situationen, die von ihnen als kritisch eingeschätzt wurden. Im Gegensatz zur ersten Studie hat sich diese gefühlte Unterstützung nur geringfügig in einer messbaren Sicherheitsveränderung widergespiegelt. Dieses Ergebnis deutet darauf hin, dass die Wahrnehmungsanforderungen der Szenarien mit geringer Kritikalität mit den vorhandenen Fahrerkapazitäten erfüllt werden konnten. Doch was passiert, wenn diese Fähigkeiten eingeschränkt werden, beispielsweise durch schlechte Sichtbedingungen oder Situationen mit erhöhter Ambiguität? In einer dritten Fahrsimulatorstudie wurde das Assistenzsystem in speziell solchen Situationen eingesetzt, was zu substantiellen Sicherheitsvorteilen gegenüber unassistiertem Fahren geführt hat. Zusätzlich zu der vorher eingeführten Form wurde eine neue Variante des Prototyps untersucht, welche räumliche Unsicherheiten der Fahrzeugwahrnehmung in taktilen Signalen kodiert. Studienteilnehmer hatten keine Schwierigkeiten, diese zusätzliche Signaldimension zu verstehen und die Information zur Verbesserung der Fahrsicherheit zu nutzen. Obwohl sie inherent weniger informativ sind als räumlich präzise Signale, bewerteten die Teilnehmer die Signale, die die Unsicherheit übermitteln, als ebenso nützlich und zufriedenstellend. Solch eine Wertschätzung für die Transparenz variabler Informationsreliabilität ist ein vielversprechendes Indiz für die Möglichkeit einer adaptiven Vertrauenskalibrierung in der Mensch-Maschine Interaktion. Dies ist ein Schritt hin zur einer engeren Integration der Fähigkeiten von Fahrer und Fahrzeug. Ein komplementärer Schritt wäre eine Erweiterung der Transparenz mentaler Zustände des Fahrers, wodurch eine wechselseitige Anpassung von Mensch und Maschine möglich wäre. Der letzte Teil dieser Arbeit diskutiert, wie diese Transparenz und weitere Voraussetzungen von Mensch-Maschine Kooperation erfüllt werden könnten, indem etwa Korrelate mentaler Zustände, insbesondere über das Blickverhalten, überwacht werden. Des Weiteren ergeben sich mit Blick auf zusätzliche kooperative Fähigkeiten neue Fragen über die Definition von Identität, sowie über die praktischen Konsequenzen von Mensch-Maschine Systemen, in denen ko-adaptive Agenten sensomotorische Prozesse vermittels einander ausüben können

    Selecting Metrics to Evaluate Human Supervisory Control Applications

    Get PDF
    The goal of this research is to develop a methodology to select supervisory control metrics. This methodology is based on cost-benefit analyses and generic metric classes. In the context of this research, a metric class is defined as the set of metrics that quantify a certain aspect or component of a system. Generic metric classes are developed because metrics are mission-specific, but metric classes are generalizable across different missions. Cost-benefit analyses are utilized because each metric set has advantages, limitations, and costs, thus the added value of different sets for a given context can be calculated to select the set that maximizes value and minimizes costs. This report summarizes the findings of the first part of this research effort that has focused on developing a supervisory control metric taxonomy that defines generic metric classes and categorizes existing metrics. Future research will focus on applying cost benefit analysis methodologies to metric selection. Five main metric classes have been identified that apply to supervisory control teams composed of humans and autonomous platforms: mission effectiveness, autonomous platform behavior efficiency, human behavior efficiency, human behavior precursors, and collaborative metrics. Mission effectiveness measures how well the mission goals are achieved. Autonomous platform and human behavior efficiency measure the actions and decisions made by the humans and the automation that compose the team. Human behavior precursors measure human initial state, including certain attitudes and cognitive constructs that can be the cause of and drive a given behavior. Collaborative metrics address three different aspects of collaboration: collaboration between the human and the autonomous platform he is controlling, collaboration among humans that compose the team, and autonomous collaboration among platforms. These five metric classes have been populated with metrics and measuring techniques from the existing literature. Which specific metrics should be used to evaluate a system will depend on many factors, but as a rule-of-thumb, we propose that at a minimum, one metric from each class should be used to provide a multi-dimensional assessment of the human-automation team. To determine what the impact on our research has been by not following such a principled approach, we evaluated recent large-scale supervisory control experiments conducted in the MIT Humans and Automation Laboratory. The results show that prior to adapting this metric classification approach, we were fairly consistent in measuring mission effectiveness and human behavior through such metrics as reaction times and decision accuracies. However, despite our supervisory control focus, we were remiss in gathering attention allocation metrics and collaboration metrics, and we often gathered too many correlated metrics that were redundant and wasteful. This meta-analysis of our experimental shortcomings reflect those in the general research population in that we tended to gravitate to popular metrics that are relatively easy to gather, without a clear understanding of exactly what aspect of the systems we were measuring and how the various metrics informed an overall research question

    Using brain-computer interaction and multimodal virtual-reality for augmenting stroke neurorehabilitation

    Get PDF
    Every year millions of people suffer from stroke resulting to initial paralysis, slow motor recovery and chronic conditions that require continuous reha bilitation and therapy. The increasing socio-economical and psychological impact of stroke makes it necessary to find new approaches to minimize its sequels, as well as novel tools for effective, low cost and personalized reha bilitation. The integration of current ICT approaches and Virtual Reality (VR) training (based on exercise therapies) has shown significant improve ments. Moreover, recent studies have shown that through mental practice and neurofeedback the task performance is improved. To date, detailed in formation on which neurofeedback strategies lead to successful functional recovery is not available while very little is known about how to optimally utilize neurofeedback paradigms in stroke rehabilitation. Based on the cur rent limitations, the target of this project is to investigate and develop a novel upper-limb rehabilitation system with the use of novel ICT technolo gies including Brain-Computer Interfaces (BCI’s), and VR systems. Here, through a set of studies, we illustrate the design of the RehabNet frame work and its focus on integrative motor and cognitive therapy based on VR scenarios. Moreover, we broadened the inclusion criteria for low mobility pa tients, through the development of neurofeedback tools with the utilization of Brain-Computer Interfaces while investigating the effects of a brain-to-VR interaction.Todos os anos, milho˜es de pessoas sofrem de AVC, resultando em paral isia inicial, recupera¸ca˜o motora lenta e condic¸˜oes cr´onicas que requerem re abilita¸ca˜o e terapia cont´ınuas. O impacto socioecon´omico e psicol´ogico do AVC torna premente encontrar novas abordagens para minimizar as seque las decorrentes, bem como desenvolver ferramentas de reabilita¸ca˜o, efetivas, de baixo custo e personalizadas. A integra¸c˜ao das atuais abordagens das Tecnologias da Informa¸ca˜o e da Comunica¸ca˜o (TIC) e treino com Realidade Virtual (RV), com base em terapias por exerc´ıcios, tem mostrado melhorias significativas. Estudos recentes mostram, ainda, que a performance nas tare fas ´e melhorada atrav´es da pra´tica mental e do neurofeedback. At´e a` data, na˜o existem informac¸˜oes detalhadas sobre quais as estrat´egias de neurofeed back que levam a uma recupera¸ca˜o funcional bem-sucedida. De igual modo, pouco se sabe acerca de como utilizar, de forma otimizada, o paradigma de neurofeedback na recupera¸c˜ao de AVC. Face a tal, o objetivo deste projeto ´e investigar e desenvolver um novo sistema de reabilita¸ca˜o de membros supe riores, recorrendo ao uso de novas TIC, incluindo sistemas como a Interface C´erebro-Computador (ICC) e RV. Atrav´es de um conjunto de estudos, ilus tramos o design do framework RehabNet e o seu foco numa terapia motora e cognitiva, integrativa, baseada em cen´arios de RV. Adicionalmente, ampli amos os crit´erios de inclus˜ao para pacientes com baixa mobilidade, atrav´es do desenvolvimento de ferramentas de neurofeedback com a utilizac¸˜ao de ICC, ao mesmo que investigando os efeitos de uma interac¸˜ao c´erebro-para-RV
    corecore