1,317 research outputs found

    Improved QoS with Fog computing based on Adaptive Load Balancing Algorithm

    Get PDF
    As the number of sensing devices rises, traffic on the cloud servers is boosting day by day. When a device connected to the IoTwants access to data, cloud computing encourages the pairing of fog & cloud nodes to provide that information. One of the key needs in a fog-based cloud system, is efficient job scheduling to decrease the data delay and improve the QoS (Quality of Service). The researchers have used a variety of strategies to maintain the QoS criteria. However, because of the increased service delay caused by the busty traffic, job scheduling is impacted which leads to the unbalanced load on the fog environment. The proposed work uses a novel model which curates the features and working style of Genetic algorithm and the optimization algorithm with the load balancing scheduling on the fog nodes. The performance of the proposed hybrid model is contrasted with the other well-known algorithms in contrast to the fundamental benchmark optimization test functions. The proposed work displays better results in sustaining the task scheduling process when compared to the existing algorithms, which include Round Robin (RR) method, Hybrid RR, Hybrid Threshold based and Hybrid Predictive Based models, which ensures the efficacy of the proposed load balancing model to improve the quality of service in fog environment

    Resource Management Techniques in Cloud-Fog for IoT and Mobile Crowdsensing Environments

    Get PDF
    The unpredictable and huge data generation nowadays by smart devices from IoT and mobile Crowd Sensing applications like (Sensors, smartphones, Wi-Fi routers) need processing power and storage. Cloud provides these capabilities to serve organizations and customers, but when using cloud appear some limitations, the most important of these limitations are Resource Allocation and Task Scheduling. The resource allocation process is a mechanism that ensures allocation virtual machine when there are multiple applications that require various resources such as CPU and I/O memory. Whereas scheduling is the process of determining the sequence in which these tasks come and depart the resources in order to maximize efficiency. In this paper we tried to highlight the most relevant difficulties that cloud computing is now facing. We presented a comprehensive review of resource allocation and scheduling techniques to overcome these limitations. Finally, the previous techniques and strategies for allocation and scheduling have been compared in a table with their drawbacks

    A secured framework for SDN-based edge computing in IoT-enabled healthcare system

    Get PDF
    The Internet of Things (IoT) consists of resource-constrained smart devices capable to sense and process data. It connects a huge number of smart sensing devices, i.e., things, and heterogeneous networks. The IoT is incorporated into different applications, such as smart health, smart home, smart grid, etc. The concept of smart healthcare has emerged in different countries, where pilot projects of healthcare facilities are analyzed. In IoT-enabled healthcare systems, the security of IoT devices and associated data is very important, whereas Edge computing is a promising architecture that solves their computational and processing problems. Edge computing is economical and has the potential to provide low latency data services by improving the communication and computation speed of IoT devices in a healthcare system. In Edge-based IoT-enabled healthcare systems, load balancing, network optimization, and efficient resource utilization are accurately performed using artificial intelligence (AI), i.e., intelligent software-defined network (SDN) controller. SDN-based Edge computing is helpful in the efficient utilization of limited resources of IoT devices. However, these low powered devices and associated data (private sensitive data of patients) are prone to various security threats. Therefore, in this paper, we design a secure framework for SDN-based Edge computing in IoT-enabled healthcare system. In the proposed framework, the IoT devices are authenticated by the Edge servers using a lightweight authentication scheme. After authentication, these devices collect data from the patients and send them to the Edge servers for storage, processing, and analyses. The Edge servers are connected with an SDN controller, which performs load balancing, network optimization, and efficient resource utilization in the healthcare system. The proposed framework is evaluated using computer-based simulations. The results demonstrate that the proposed framework provides better solutions for IoT-enabled healthcare systems. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramaniam” is provided in this record*

    A Comparison of Cloud Execution Mechanisms: Fog, Edge and Clone Cloud Computing

    Get PDF
    Cloud computing is a technology that was developed a decade ago to provide uninterrupted, scalable services to  users  and  organizations. Cloud  computing  also  became  an attractive feature for mobile users due to the limited features of mobile devices. The combination of cloud technologies with mobile technologies gave a new area of computing called mobile cloud computing. This  combined technology is  used to augment the resources existing in smart devices. In recent times Fog computing, Edge computing and Clone Cloud computing techniques have become the latest trends after mobile cloud computing, which have all been developed to address the limitations in cloud computing. This paper reviews these recent technologies in detail. This paper also addresses the differences in these technologies and how each of them are effective to organizations and developers.Cloud computing is a technology that was developed a decade ago to provide uninterrupted, scalable services to users and organizations. Cloud computing  also became an attractive feature for mobile users due to the limited features of mobile devices. The combination of cloud technologies with mobile technologies gave a new area of computing called mobile cloud computing. This  combined technology is  used to augment the resources existing in smart devices. In recent times Fog computing, Edge computing and Clone Cloud computing techniques have become the latest trends after mobile cloud computing, which have all been developed to address the limitations in cloud computing. This paper reviews these recent technologies in detail. This paper also addresses the differences in these technologies and how each of them are effective to organizations and developers.Cloud computing is a technology that was developed a decade ago to provide uninterrupted, scalable services to  users  and  organizations. Cloud  computing  also  became  an attractive feature for mobile users due to the limited features of mobile devices. The combination of cloud technologies with mobile technologies gave a new area of computing called mobile cloud computing. This  combined technology is  used to augment the resources existing in smart devices. In recent times Fog computing, Edge computing and Clone Cloud computing techniques have become the latest trends after mobile cloud computing, which have all been developed to address the limitations in cloud computing. This paper reviews these recent technologies in detail. This paper also addresses the differences in these technologies and how each of them are effective to organizations and developers
    corecore