1,019 research outputs found

    Dynamic Non-Orthogonal Multiple Access (NOMA) and Orthogonal Multiple Access (OMA) in 5G Wireless Networks

    Get PDF
    In this paper, facilitated via the flexible software defined structure of the radio access units in 5G, we propose a novel dynamic multiple access technology selection among orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) techniques for each subcarrier. For this setup, we formulate a joint resource allocation problem where a new set of access technology selection parameters along with power and subcarrier are allocated for each user based on each user's channel state information. Here, we define a novel utility function taking into account the rate and costs of access technologies. This cost reflects both the complexity of performing successive interference cancellation and the complexity incurred to guarantee a desired bit error rate. This utility function can inherently demonstrate the trade-off between OMA and NOMA. Due to non-convexity of our proposed resource allocation problem, we resort to successive convex approximation where a two-step iterative algorithm is applied in which a problem of the first step, called access technology selection, is transformed into a linear integer programming problem, and the nonconvex problem of the second step, referred to power allocation problem, is solved via the difference-of-convex-functions (DC) programming. Moreover, the closed-form solution for power allocation in the second step is derived. For diverse network performance criteria such as rate, simulation results show that the proposed new dynamic access technology selection outperforms single-technology OMA or NOMA multiple access solutions.Comment: 28 pages, 6 figure

    Dynamic non-orthogonal multiple access (NOMA) and orthogonal multiple access (OMA) in 5G wireless networks

    Get PDF
    In this paper, a novel dynamic multiple access technology selection among orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) techniques is proposed. For this setup, a joint resource allocation problem is formulated in which a new set of access technology selection parameters along with power and subcarrier are allocated for each user based on each user’s channel state information. Here, a novel utility function is defined to take into account the rate and costs of access technologies. This cost reflects both the complexity of performing successive interference cancellation and the complexity incurred to guarantee a desired bit error rate. This utility function can inherently capture the tradeoff between OMA and NOMA. Due to non-convexity of the proposed resource allocation problem, a successive convex approximation is developed in which a two-step iterative algorithm is applied. In the first step, called access technology selection, the problem is transformed into a linear integer programming problem, and then, in the second step, a nonconvex problem, referred to power allocation problem, is solved via the difference-of-convexfunctions (DC) programming. Moreover, the closed-form solution for power allocation in the second step is derived. For diverse network performance criteria such as rate, simulation results show that the proposed new dynamic access technology selection outperforms single-technology OMA or NOMA multiple access solutions
    • …
    corecore