473 research outputs found

    Assessment of Unmanned Aerial Systems and lidar for the Utility Vegetation Management of Electrical Distribution Rights-of-Ways

    Get PDF
    Utility Vegetation Management (UVM) is often the largest maintenance expense for many utilities. However, with advances in Unmanned Aerial Systems (UAS; or more commonly, “drones”) and lidar technologies, vegetation managers may be able to more rapidly and accurately identify vegetation threats to critical infrastructures. The goal of this study was to assess the utility of Geodetics’ UAS-lidar system for vegetation threat assessment for 1.6 km of a distribution electric circuit. We investigated factors which contribute to accurate tree crown detection and segmentation of trees from within an UAS-lidar derived point cloud, and the factors which contribute to accurate tree risk assessment. The study adapted the International Society of Arboriculture’s (ISA) tree risk assessment methodology to the application of remotely sensed tree inventory. We utilized the lidar detected and segmented tree crowns for tree risk analysis based upon each tree’s height, elevation, and location in relation to the electrical infrastructure. The individual tree detection and segmentation results show that our canopy type parameter and the routine used for field- and lidar-derived tree matching to have the largest effect on the classification agreement of field and lidar derived datasets. The Threat Detection classification also demonstrated a significant effect due to our canopy modeling parameter, where single canopy models possessed higher average Kappa agreement statistic and divided canopy models detected a larger number of threats on average. Ultimately, our best model was capable of the correct detection, segmentation, matching, and classification of half of the field trees which were determined to be vegetation threats

    Pavement Surface Distress Detection, Assessment, and Modeling Using Geospatial Techniques

    Get PDF
    Roadway pavement surface distress information is essential for effective pavement asset management, and subsequently, transportation agencies at all levels dedicate a large amount of time and money to routinely collect data on pavement surface distress conditions as the core of their asset management programs. These data are used by these agencies to make maintenance and repair decisions. Current methods for pavement surface distress evaluation are time-consuming and expensive. Geospatial technologies provide new methods for evaluating pavement surface distress condition that can supplement or substitute for currently-adopted evaluation methods. However, few previous studies have explored the utility of geospatial technologies for pavement surface distress evaluation. The primary scope of this research is to evaluate the potential of three geospatial techniques to improve the efficiency of pavement surface distress evaluation, including empirical analysis of high-spatial resolution natural color digital aerial photography (HiSR-DAP), empirical analysis of hyper-spatial resolution natural color digital aerial photography (HySR-DAP), and inferential geospatial modeling based on traffic volume, environmental conditions, and topographic factors. Pavement surface distress rates estimated from the aforementioned geospatial technologies are validated against distress data manually collected using standard protocols. Research results reveal that straightforward analysis of the spectral response extracted from HiSR-DAP can permit assessment of overall pavement surface conditions. In addition, HySR-DAP acquired from S-UAS can provide accurate and reliable information to characterize detailed pavement surface distress conditions. Research results also show that overall pavement surface distress condition can be effectively estimated based on the extent of geospatial data and inferential modeling techniques. In the near term, these proposed methods could be used to rapidly and cost-effectively evaluate pavement surface distress condition for roadway sections where field inspectors or survey vehicles cannot gain access. In the long term, these proposed methods are capable of being automated to routinely evaluate pavement surface distress condition and, ultimately, to provide a cost-effective, rapid, and safer alternative to currently-adopted evaluation methods with substantially reduced sampling density

    Aeronautical Engineering: A special bibliography with indexes, supplement 48

    Get PDF
    This special bibliography lists 291 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1974

    Identification and Optimal Linear Tracking Control of ODU Autonomous Surface Vehicle

    Get PDF
    Autonomous surface vehicles (ASVs) are being used for diverse applications of civilian and military importance such as: military reconnaissance, sea patrol, bathymetry, environmental monitoring, and oceanographic research. Currently, these unmanned tasks can accurately be accomplished by ASVs due to recent advancements in computing, sensing, and actuating systems. For this reason, researchers around the world have been taking interest in ASVs for the last decade. Due to the ever-changing surface of water and stochastic disturbances such as wind and tidal currents that greatly affect the path-following ability of ASVs, identification of an accurate model of inherently nonlinear and stochastic ASV system and then designing a viable control using that model for its planar motion is a challenging task. For planar motion control of ASV, the work done by researchers is mainly based on the theoretical modeling in which the nonlinear hydrodynamic terms are determined, while some work suggested the nonlinear control techniques and adhered to simulation results. Also, the majority of work is related to the mono- or twin-hull ASVs with a single rudder. The ODU-ASV used in present research is a twin-hull design having two DC trolling motors for path-following motion. A novel approach of time-domain open-loop observer Kalman filter identifications (OKID) and state-feedback optimal linear tracking control of ODU-ASV is presented, in which a linear state-space model of ODU-ASV is obtained from the measured input and output data. The accuracy of the identified model for ODU-ASV is confirmed by validation results of model output data reconstruction and benchmark residual analysis. Then, the OKID-identified model of the ODU-ASV is utilized to design the proposed controller for its planar motion such that a predefined cost function is minimized using state and control weighting matrices, which are determined by a multi-objective optimization genetic algorithm technique. The validation results of proposed controller using step inputs as well as sinusoidal and arc-like trajectories are presented to confirm the controller performance. Moreover, real-time water-trials were performed and their results confirm the validity of proposed controller in path-following motion of ODU-ASV

    COBE's search for structure in the Big Bang

    Get PDF
    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle

    Automatic vision based fault detection on electricity transmission components using very highresolution

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesElectricity is indispensable to modern-day governments and citizenry’s day-to-day operations. Fault identification is one of the most significant bottlenecks faced by Electricity transmission and distribution utilities in developing countries to deliver credible services to customers and ensure proper asset audit and management for network optimization and load forecasting. This is due to data scarcity, asset inaccessibility and insecurity, ground-surveys complexity, untimeliness, and general human cost. In this context, we exploit the use of oblique drone imagery with a high spatial resolution to monitor four major Electric power transmission network (EPTN) components condition through a fine-tuned deep learning approach, i.e., Convolutional Neural Networks (CNNs). This study explored the capability of the Single Shot Multibox Detector (SSD), a onestage object detection model on the electric transmission power line imagery to localize, classify and inspect faults present. The components fault considered include the broken insulator plate, missing insulator plate, missing knob, and rusty clamp. The adopted network used a CNN based on a multiscale layer feature pyramid network (FPN) using aerial image patches and ground truth to localise and detect faults via a one-phase procedure. The SSD Rest50 architecture variation performed the best with a mean Average Precision of 89.61%. All the developed SSD based models achieve a high precision rate and low recall rate in detecting the faulty components, thus achieving acceptable balance levels F1-score and representation. Finally, comparable to other works of literature within this same domain, deep-learning will boost timeliness of EPTN inspection and their component fault mapping in the long - run if these deep learning architectures are widely understood, adequate training samples exist to represent multiple fault characteristics; and the effects of augmenting available datasets, balancing intra-class heterogeneity, and small-scale datasets are clearly understood

    Fourth Airborne Geoscience Workshop

    Get PDF
    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection

    Perception of Unstructured Environments for Autonomous Off-Road Vehicles

    Get PDF
    Autonome Fahrzeuge benötigen die Fähigkeit zur Perzeption als eine notwendige Voraussetzung für eine kontrollierbare und sichere Interaktion, um ihre Umgebung wahrzunehmen und zu verstehen. Perzeption für strukturierte Innen- und Außenumgebungen deckt wirtschaftlich lukrative Bereiche, wie den autonomen Personentransport oder die Industrierobotik ab, während die Perzeption unstrukturierter Umgebungen im Forschungsfeld der Umgebungswahrnehmung stark unterrepräsentiert ist. Die analysierten unstrukturierten Umgebungen stellen eine besondere Herausforderung dar, da die vorhandenen, natürlichen und gewachsenen Geometrien meist keine homogene Struktur aufweisen und ähnliche Texturen sowie schwer zu trennende Objekte dominieren. Dies erschwert die Erfassung dieser Umgebungen und deren Interpretation, sodass Perzeptionsmethoden speziell für diesen Anwendungsbereich konzipiert und optimiert werden müssen. In dieser Dissertation werden neuartige und optimierte Perzeptionsmethoden für unstrukturierte Umgebungen vorgeschlagen und in einer ganzheitlichen, dreistufigen Pipeline für autonome Geländefahrzeuge kombiniert: Low-Level-, Mid-Level- und High-Level-Perzeption. Die vorgeschlagenen klassischen Methoden und maschinellen Lernmethoden (ML) zur Perzeption bzw.~Wahrnehmung ergänzen sich gegenseitig. Darüber hinaus ermöglicht die Kombination von Perzeptions- und Validierungsmethoden für jede Ebene eine zuverlässige Wahrnehmung der möglicherweise unbekannten Umgebung, wobei lose und eng gekoppelte Validierungsmethoden kombiniert werden, um eine ausreichende, aber flexible Bewertung der vorgeschlagenen Perzeptionsmethoden zu gewährleisten. Alle Methoden wurden als einzelne Module innerhalb der in dieser Arbeit vorgeschlagenen Perzeptions- und Validierungspipeline entwickelt, und ihre flexible Kombination ermöglicht verschiedene Pipelinedesigns für eine Vielzahl von Geländefahrzeugen und Anwendungsfällen je nach Bedarf. Low-Level-Perzeption gewährleistet eine eng gekoppelte Konfidenzbewertung für rohe 2D- und 3D-Sensordaten, um Sensorausfälle zu erkennen und eine ausreichende Genauigkeit der Sensordaten zu gewährleisten. Darüber hinaus werden neuartige Kalibrierungs- und Registrierungsansätze für Multisensorsysteme in der Perzeption vorgestellt, welche lediglich die Struktur der Umgebung nutzen, um die erfassten Sensordaten zu registrieren: ein halbautomatischer Registrierungsansatz zur Registrierung mehrerer 3D~Light Detection and Ranging (LiDAR) Sensoren und ein vertrauensbasiertes Framework, welches verschiedene Registrierungsmethoden kombiniert und die Registrierung verschiedener Sensoren mit unterschiedlichen Messprinzipien ermöglicht. Dabei validiert die Kombination mehrerer Registrierungsmethoden die Registrierungsergebnisse in einer eng gekoppelten Weise. Mid-Level-Perzeption ermöglicht die 3D-Rekonstruktion unstrukturierter Umgebungen mit zwei Verfahren zur Schätzung der Disparität von Stereobildern: ein klassisches, korrelationsbasiertes Verfahren für Hyperspektralbilder, welches eine begrenzte Menge an Test- und Validierungsdaten erfordert, und ein zweites Verfahren, welches die Disparität aus Graustufenbildern mit neuronalen Faltungsnetzen (CNNs) schätzt. Neuartige Disparitätsfehlermetriken und eine Evaluierungs-Toolbox für die 3D-Rekonstruktion von Stereobildern ergänzen die vorgeschlagenen Methoden zur Disparitätsschätzung aus Stereobildern und ermöglichen deren lose gekoppelte Validierung. High-Level-Perzeption konzentriert sich auf die Interpretation von einzelnen 3D-Punktwolken zur Befahrbarkeitsanalyse, Objekterkennung und Hindernisvermeidung. Eine Domänentransferanalyse für State-of-the-art-Methoden zur semantischen 3D-Segmentierung liefert Empfehlungen für eine möglichst exakte Segmentierung in neuen Zieldomänen ohne eine Generierung neuer Trainingsdaten. Der vorgestellte Trainingsansatz für 3D-Segmentierungsverfahren mit CNNs kann die benötigte Menge an Trainingsdaten weiter reduzieren. Methoden zur Erklärbarkeit künstlicher Intelligenz vor und nach der Modellierung ermöglichen eine lose gekoppelte Validierung der vorgeschlagenen High-Level-Methoden mit Datensatzbewertung und modellunabhängigen Erklärungen für CNN-Vorhersagen. Altlastensanierung und Militärlogistik sind die beiden Hauptanwendungsfälle in unstrukturierten Umgebungen, welche in dieser Arbeit behandelt werden. Diese Anwendungsszenarien zeigen auch, wie die Lücke zwischen der Entwicklung einzelner Methoden und ihrer Integration in die Verarbeitungskette für autonome Geländefahrzeuge mit Lokalisierung, Kartierung, Planung und Steuerung geschlossen werden kann. Zusammenfassend lässt sich sagen, dass die vorgeschlagene Pipeline flexible Perzeptionslösungen für autonome Geländefahrzeuge bietet und die begleitende Validierung eine exakte und vertrauenswürdige Perzeption unstrukturierter Umgebungen gewährleistet

    Optimising mobile laser scanning for underground mines

    Full text link
    Despite several technological advancements, underground mines are still largely relied on visual inspections or discretely placed direct-contact measurement sensors for routine monitoring. Such approaches are manual and often yield inconclusive, unreliable and unscalable results besides exposing mine personnel to field hazards. Mobile laser scanning (MLS) promises an automated approach that can generate comprehensive information by accurately capturing large-scale 3D data. Currently, the application of MLS has relatively remained limited in mining due to challenges in the post-registration of scans and the unavailability of suitable processing algorithms to provide a fully automated mapping solution. Additionally, constraints such as the absence of a spatial positioning network and the deficiency of distinguishable features in underground mining spaces pose challenges in mobile mapping. This thesis aims to address these challenges in mine inspections by optimising different aspects of MLS: (1) collection of large-scale registered point cloud scans of underground environments, (2) geological mapping of structural discontinuities, and (3) inspection of structural support features. Firstly, a spatial positioning network was designed using novel three-dimensional unique identifiers (3DUID) tags and a 3D registration workflow (3DReG), to accurately obtain georeferenced and coregistered point cloud scans, enabling multi-temporal mapping. Secondly, two fully automated methods were developed for mapping structural discontinuities from point cloud scans – clustering on local point descriptors (CLPD) and amplitude and phase decomposition (APD). These methods were tested on both surface and underground rock mass for discontinuity characterisation and kinematic analysis of the failure types. The developed algorithms significantly outperformed existing approaches, including the conventional method of compass and tape measurements. Finally, different machine learning approaches were used to automate the recognition of structural support features, i.e. roof bolts from point clouds, in a computationally efficient manner. Roof bolts being mapped from a scanned point cloud provided an insight into their installation pattern, which underpinned the applicability of laser scanning to inspect roof supports rapidly. Overall, the outcomes of this study lead to reduced human involvement in field assessments of underground mines using MLS, demonstrating its potential for routine multi-temporal monitoring
    • …
    corecore