28 research outputs found

    Design of indoor communication infrastructure for ultra-high capacity next generation wireless services

    Get PDF
    The proliferation of data hungry wireless devices, such as smart phones and intelligent sensing networks, is pushing modern wireless networks to their limits. A significant shortfall in the ability of networks to meet demand for data is imminent. This thesis addresses this problem through examining the design of distributed antenna systems (DAS) to support next generation high speed wireless services that require high densities of access points and must support multiple-input multiple-output (MIMO) protocols. First, it is shown that fibre links in DAS can be replaced with low-cost, broadband free-space optical links, termed radio over free-space optics (RoFSO) links. RoFSO links enable the implementation of very high density DAS without the need for prohibitively expensive cabling infrastructure. A 16m RoFSO link requiring only manual alignment is experimentally demonstrated to provide a spurious-free dynamic range (SFDR) of > 100dB/Hz^2/3 over a frequency range from 300MHz- 3.1GHz. The link is measured to have an 802.11g EVM dynamic range of 36dB. This is the first such demonstration of a low-cost broadband RoFSO system. Following this, the linearity performance of RoFSO links is examined. Because of the high loss nature of RoFSO links, the directly-modulated semiconductor lasers they use are susceptible to high-order nonlinear behaviour, which abruptly limits performance at high powers. Existing measures of dynamic range, such as SFDR, assume only third-order nonlinearity and so become inaccurate in the presence of dominant high-order effects. An alternative measure of dynamic range called dynamic-distortion-free dynamic range (DDFDR) is then proposed. For two different wireless services it is observed experimentally that on average the DDFDR upper limit predicts the EVM knee point to within 1dB, while the third-order SFDR predicts it to within 6dB. This is the first detailed analysis of high-order distortion effects in lossy analogue optical links and DDFDR is the first metric able to usefully quantify such behaviour. Next, the combination of emerging MIMO wireless protocols with existing DAS is examined. It is demonstrated for the first time that for small numbers of MIMO streams (up to ~4), the capacity benefits of MIMO can be attained in existing DAS installations simply by sending the different MIMO spatial streams to spatially separated remote antenna units (RAU). This is in contrast to the prevailing paradigm of replicating each MIMO spatial stream at each RAU. Experimental results for two representative DAS layouts show that replicating spatial streams provides an increase of only ~1% in the median channel capacity over merely distributing them. This compares to a 3-4% increase of both strategies over traditional non-DAS MIMO. This result is shown to hold in the multiple user case with 20 users accessing 3 base stations. It is concluded that existing DAS installations offer negligible capacity penalty for MIMO services for small numbers of spatial streams, including in multi-user MIMO scenarios. Finally, the design of DAS to support emerging wireless protocols, such as 802.11ac, that have large numbers of MIMO streams (4-8) is considered. In such cases, capacity is best enhanced by sending multiple MIMO streams to single remote locations. This is achieved using a novel holographic mode division multiplexing (MDM) system, which sends each separate MIMO stream via a different propagation mode in a multimode fibre. Combined channel measurements over 2km of mode-multiplexed MMF and a typical indoor radio environment show in principle a 2x2 MIMO link providing capacities of 10bit/s/Hz over a bandwidth of 6GHz. Using a second experimental set-up it is shown that the system could feasibly support at least up to a 4x4 MIMO system over 2km of MMF with a condition number >15dB over a bandwidth of 3GHz, indicating a high degree of separability of the channels. Finally, it is shown experimentally that when a fibre contains sharp bends (radius between 20mm and 7.2mm) the first 6 mode-groups used for multiplexing exhibit no additional power loss or cross-coupling compared with unbent fibre, although mode-groups 7, 8 and 9 are more severely affected. This indicates that at least 6x6 multiplexing is possible in standard installations with tight fibre bends.For their financial support, I would like to thank the Rutherford Foundation of the Royal Society of New Zealand, the Cambridge Commonwealth Trust and the EPSRC

    Assessment of avionics technology in European aerospace organizations

    Get PDF
    This report provides a summary of the observations and recommendations made by a technical panel formed by the National Aeronautics and Space Administration (NASA). The panel, comprising prominent experts in the avionics field, was tasked to visit various organizations in Europe to assess the level of technology planned for use in manufactured civil avionics in the future. The primary purpose of the study was to assess avionics systems planned for implementation or already employed on civil aircraft and to evaluate future research, development, and engineering (RD&E) programs, address avionic systems and aircraft programs. The ultimate goal is to ensure that the technology addressed by NASa programs is commensurate with the needs of the aerospace industry at an international level. The panel focused on specific technologies, including guidance and control systems, advanced cockpit displays, sensors and data networks, and fly-by-wire/fly-by-light systems. However, discussions the panel had with the European organizations were not limited to these topics

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions

    Mu2e Technical Design Report

    Full text link
    The Mu2e experiment at Fermilab will search for charged lepton flavor violation via the coherent conversion process mu- N --> e- N with a sensitivity approximately four orders of magnitude better than the current world's best limits for this process. The experiment's sensitivity offers discovery potential over a wide array of new physics models and probes mass scales well beyond the reach of the LHC. We describe herein the preliminary design of the proposed Mu2e experiment. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2 approval.Comment: compressed file, 888 pages, 621 figures, 126 tables; full resolution available at http://mu2e.fnal.gov; corrected typo in background summary, Table 3.

    Customer premise service study for 30/20 GHz satellite system

    Get PDF
    Satellite systems in which the space segment operates in the 30/20 GHz frequency band are defined and compared as to their potential for providing various types of communications services to customer premises and the economic and technical feasibility of doing so. Technical tasks performed include: market postulation, definition of the ground segment, definition of the space segment, definition of the integrated satellite system, service costs for satellite systems, sensitivity analysis, and critical technology. Based on an analysis of market data, a sufficiently large market for services is projected so as to make the system economically viable. A large market, and hence a high capacity satellite system, is found to be necessary to minimize service costs, i.e., economy of scale is found to hold. The wide bandwidth expected to be available in the 30/20 GHz band, along with frequency reuse which further increases the effective system bandwidth, makes possible the high capacity system. Extensive ground networking is required in most systems to both connect users into the system and to interconnect Earth stations to provide spatial diversity. Earth station spatial diversity is found to be a cost effective means of compensating the large fading encountered in the 30/20 GHz operating band

    NASA/ASEE Summer Faculty Fellowship Program. 1994 research reports

    Get PDF
    This document is a collection of technical reports on research conducted by the participants in the 1994 NASA/ASEE Summer Faculty Fellowship Program at Kennedy Space Center (KSC). This was the tenth year that a NASA/ASEE program has been conducted at KSC. The 1994 program was administered by the University of Central Florida in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) with sponsorship and funding from the Office of Educational Affairs, NASA Headquarters, Washington, D.C. The KSC Program was one of nine such Aeronautics and Space Research Programs funded by NASA Headquarters in 1994. The NASA/ASEE program is intended to be a two-year program to allow in-depth research by the University faculty member. The editors of this document were responsible for selecting appropriately qualified faculty to address some of the many problems of current interest to NASA/KSC

    Aeronautical engineering: A continuing bibliography with indexes, supplement 146, March 1982

    Get PDF
    This bibliography lists 442 reports, articles, and other documents introduced into the NASA scientific and technical system in February 1982

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics
    corecore