82 research outputs found

    Inductive biases and metaknowledge representations for search-based optimization

    Get PDF
    "What I do not understand, I can still create."- H. Sayama The following work follows closely the aforementioned bonmot. Guided by questions such as: ``How can evolutionary processes exhibit learning behavior and consolidate knowledge?´´, ``What are cognitive models of problem-solving?´´ and ``How can we harness these altogether as computational techniques?´´, we clarify within this work essentials required to implement them for metaheuristic search and optimization.We therefore look into existing models of computational problem-solvers and compare these with existing methodology in literature. Particularly, we find that the meta-learning model, which frames problem-solving in terms of domain-specific inductive biases and the arbitration thereof through means of high-level abstractions resolves outstanding issues with methodology proposed within the literature. Noteworthy, it can be also related to ongoing research on algorithm selection and configuration frameworks. We therefore look in what it means to implement such a model by first identifying inductive biases in terms of algorithm components and modeling these with density estimation techniques. And secondly, propose methodology to process metadata generated by optimization algorithms in an automated manner through means of deep pattern recognition architectures for spatio-temporal feature extraction. At last we look into an exemplary shape optimization problem which allows us to gain insight into what it means to apply our methodology to application scenarios. We end our work with a discussion on future possible directions to explore and discuss the limitations of such frameworks for system deployment

    Machine learning in the analysis of biomolecular simulations

    Get PDF
    Machine learning has rapidly become a key method for the analysis and organization of large-scale data in all scientific disciplines. In life sciences, the use of machine learning techniques is a particularly appealing idea since the enormous capacity of computational infrastructures generates terabytes of data through millisecond simulations of atomistic and molecular-scale biomolecular systems. Due to this explosion of data, the automation, reproducibility, and objectivity provided by machine learning methods are highly desirable features in the analysis of complex systems. In this review, we focus on the use of machine learning in biomolecular simulations. We discuss the main categories of machine learning tasks, such as dimensionality reduction, clustering, regression, and classification used in the analysis of simulation data. We then introduce the most popular classes of techniques involved in these tasks for the purpose of enhanced sampling, coordinate discovery, and structure prediction. Whenever possible, we explain the scope and limitations of machine learning approaches, and we discuss examples of applications of these techniques.Peer reviewe
    • …
    corecore