1,413 research outputs found

    CLAD: A Complex and Long Activities Dataset with Rich Crowdsourced Annotations

    Get PDF
    This paper introduces a novel activity dataset which exhibits real-life and diverse scenarios of complex, temporally-extended human activities and actions. The dataset presents a set of videos of actors performing everyday activities in a natural and unscripted manner. The dataset was recorded using a static Kinect 2 sensor which is commonly used on many robotic platforms. The dataset comprises of RGB-D images, point cloud data, automatically generated skeleton tracks in addition to crowdsourced annotations. Furthermore, we also describe the methodology used to acquire annotations through crowdsourcing. Finally some activity recognition benchmarks are presented using current state-of-the-art techniques. We believe that this dataset is particularly suitable as a testbed for activity recognition research but it can also be applicable for other common tasks in robotics/computer vision research such as object detection and human skeleton tracking

    An introduction to crowdsourcing for language and multimedia technology research

    Get PDF
    Language and multimedia technology research often relies on large manually constructed datasets for training or evaluation of algorithms and systems. Constructing these datasets is often expensive with significant challenges in terms of recruitment of personnel to carry out the work. Crowdsourcing methods using scalable pools of workers available on-demand offers a flexible means of rapid low-cost construction of many of these datasets to support existing research requirements and potentially promote new research initiatives that would otherwise not be possible

    A Glimpse Far into the Future: Understanding Long-term Crowd Worker Quality

    Full text link
    Microtask crowdsourcing is increasingly critical to the creation of extremely large datasets. As a result, crowd workers spend weeks or months repeating the exact same tasks, making it necessary to understand their behavior over these long periods of time. We utilize three large, longitudinal datasets of nine million annotations collected from Amazon Mechanical Turk to examine claims that workers fatigue or satisfice over these long periods, producing lower quality work. We find that, contrary to these claims, workers are extremely stable in their quality over the entire period. To understand whether workers set their quality based on the task's requirements for acceptance, we then perform an experiment where we vary the required quality for a large crowdsourcing task. Workers did not adjust their quality based on the acceptance threshold: workers who were above the threshold continued working at their usual quality level, and workers below the threshold self-selected themselves out of the task. Capitalizing on this consistency, we demonstrate that it is possible to predict workers' long-term quality using just a glimpse of their quality on the first five tasks.Comment: 10 pages, 11 figures, accepted CSCW 201

    Social Machinery and Intelligence

    Get PDF
    Social machines are systems formed by technical and human elements interacting in a structured manner. The use of digital platforms as mediators allows large numbers of human participants to join such mechanisms, creating systems where interconnected digital and human components operate as a single machine capable of highly sophisticated behaviour. Under certain conditions, such systems can be described as autonomous and goal-driven agents. Many examples of modern Artificial Intelligence (AI) can be regarded as instances of this class of mechanisms. We argue that this type of autonomous social machines has provided a new paradigm for the design of intelligent systems marking a new phase in the field of AI. The consequences of this observation range from methodological, philosophical to ethical. On the one side, it emphasises the role of Human-Computer Interaction in the design of intelligent systems, while on the other side it draws attention to both the risks for a human being and those for a society relying on mechanisms that are not necessarily controllable. The difficulty by companies in regulating the spread of misinformation, as well as those by authorities to protect task-workers managed by a software infrastructure, could be just some of the effects of this technological paradigm
    corecore