837 research outputs found

    Indoor localisation by using wireless sensor nodes

    Get PDF
    This study is devoted to investigating and developing WSN based localisation approaches with high position accuracies indoors. The study initially summarises the design and implementation of localisation systems and WSN architecture together with the characteristics of LQI and RSSI values. A fingerprint localisation approach is utilised for indoor positioning applications. A k-nearest neighbourhood algorithm (k-NN) is deployed, using Euclidean distances between the fingerprint database and the object fingerprints, to estimate unknown object positions. Weighted LQI and RSSI values are calculated and the k-NN algorithm with different weights is utilised to improve the position detection accuracy. Different weight functions are investigated with the fingerprint localisation technique. A novel weight function which produced the maximum position accuracy is determined and employed in calculations. The study covered designing and developing the centroid localisation (CL) and weighted centroid localisation (WCL) approaches by using LQI values. A reference node localisation approach is proposed. A star topology of reference nodes are to be utilized and a 3-NN algorithm is employed to determine the nearest reference nodes to the object location. The closest reference nodes are employed to each nearest reference nodes and the object locations are calculated by using the differences between the closest and nearest reference nodes. A neighbourhood weighted localisation approach is proposed between the nearest reference nodes in star topology. Weights between nearest reference nodes are calculated by using Euclidean and physical distances. The physical distances between the object and the nearest reference nodes are calculated and the trigonometric techniques are employed to derive the object coordinates. An environmentally adaptive centroid localisation approach is proposed.Weighted standard deviation (STD) techniques are employed adaptively to estimate the unknown object positions. WSNs with minimum RSSI mean values are considered as reference nodes across the sensing area. The object localisation is carried out in two phases with respect to these reference nodes. Calculated object coordinates are later translated into the universal coordinate system to determine the actual object coordinates. Virtual fingerprint localisation technique is introduced to determine the object locations by using virtual fingerprint database. A physical fingerprint database is organised in the form of virtual database by using LQI distribution functions. Virtual database elements are generated among the physical database elements with linear and exponential distribution functions between the fingerprint points. Localisation procedures are repeated with virtual database and localisation accuracies are improved compared to the basic fingerprint approach. In order to reduce the computation time and effort, segmentation of the sensing area is introduced. Static and dynamic segmentation techniques are deployed. Segments are defined by RSS ranges and the unknown object is localised in one of these segments. Fingerprint techniques are applied only in the relevant segment to find the object location. Finally, graphical user interfaces (GUI) are utilised with application program interfaces (API), in all calculations to visualise unknown object locations indoors

    AN ENERGY EFFICIENT CROSS-LAYER NETWORK OPERATION MODEL FOR MOBILE WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless sensor networks (WSNs) are modern technologies used to sense/control the environment whether indoors or outdoors. Sensor nodes are miniatures that can sense a specific event according to the end user(s) needs. The types of applications where such technology can be utilised and implemented are vast and range from households’ low end simple need applications to high end military based applications. WSNs are resource limited. Sensor nodes are expected to work on a limited source of power (e.g., batteries). The connectivity quality and reliability of the nodes is dependent on the quality of the hardware which the nodes are made of. Sensor nodes are envisioned to be either stationary or mobile. Mobility increases the issues of the quality of the operation of the network because it effects directly on the quality of the connections between the nodes

    Advanced methods for mapping the radiofrequency magnetic fields in MRI

    Get PDF
    As MRI systems have increased in static magnetic field strength, the radiofrequency (RF) fields that are used for magnetisation excitation and signal reception have become significantly less uniform. This can lead to image artifacts and errors when performing quantitative MRI. A further complication arises if the RF fields vary substantially in time. In the first part of this investigation temporal variations caused by respiration were explored on a 3T scanner. It was found that fractional changes in transmit field amplitude between inhalation and expiration ranged from 1% to 14% in the region of the liver in a small group of normal subjects. This observation motivated the development of a pulse sequence and reconstruction method to allow dynamic observation of the transmit field throughout the respiratory cycle. However, the proposed method was unsuccessful due to the inherently time-consuming nature of transmit field mapping sequences. This prompted the development of a novel data reconstruction method to allow the acceleration of transmit field mapping sequences. The proposed technique posed the RF field reconstruction as a nonlinear least-squares optimisation problem, exploiting the fact that the fields vary smoothly. It was shown that this approach was superior to standard reconstruction approaches. The final component of this thesis presents a unified approach to RF field calibration. The proposed method uses all measured data to estimate both transmit and receive sensitivities, whilst simultaneously insisting that they are smooth functions of space. The resulting maps are robust to both noise and imperfections in regions of low signal

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance

    Asynchronous Ultrasonic Trilateration for Indoor Positioning of Mobile Phones

    Get PDF
    Spatial awareness is fast becoming the key feature on today‟s mobile devices. While accurate outdoor navigation has been widely available for some time through Global Positioning Systems (GPS), accurate indoor positioning is still largely an unsolved problem. One major reason for this is that GPS and other Global Navigation Satellite Systems (GNSS) systems offer accuracy of a scale far different to that required for effective indoor navigation. Indoor positioning is also hindered by poor GPS signal quality, a major issue when developing dedicated indoor locationing systems. In addition, many indoor systems use specialized hardware to calculate accurate device position, as readily available wireless protocols have so far not delivered sufficient levels of accuracy. This research aims to investigate how the mobile phone‟s innate ability to produce sound (notably ultrasound) can be utilised to deliver more accurate indoor positioning than current methods. Experimental work covers limitations of mobile phone speakers in regard to generation of high frequencies, propagation patternsof ultrasound and their impact on maximum range, and asynchronous trilateration. This is followed by accuracy and reliability tests of an ultrasound positioning system prototype.This thesis proposes a new method of positioning a mobile phone indoors with accuracy substantially better than other contemporary positioning systems available on off-theshelf mobile devices. Given that smartphones can be programmed to correctly estimate direction, this research outlines a potentially significant advance towards a practical platform for indoor Location Based Services. Also a novel asynchronous trilateration algorithm is proposed that eliminates the need for synchronisation between the mobile device and the positioning infrastructure

    Development of remote sensing technology in New Zealand, part 1. Seismotectonic, structural, volcanologic and geomorphic study of New Zealand, part 2. Indigenous forest assessment, part 3. Mapping land use and environmental studies in New Zealand, part 4. New Zealand forest service LANDSAT projects, part 5. Vegetation map and landform map of Aupouri Peninsula, Northland, part 6. Geographical applications of LANDSAT mapping, part 7

    Get PDF
    The author has identified the following significant results. Inspection of pixels obtained from LANDSAT of New Zealand revealed that not only can ships and their wakes be detected, but that information on the size, state of motion, and direction of movement was inferred by calculating the total number of pixels occupied by the vessel and wake, the orientation of these pixels, and the sum of their radiance values above the background level. Computer enhanced images showing the Waimihia State Forest and much of Kaingaroa State Forest on 22 December 1975 were examined. Most major forest categories were distinguished on LANDSAT imagery. However, the LANDSAT imagery seemed to be most useful for updating and checking existing forest maps, rather than making new maps with many forest categories. Snow studies were performed using two basins: Six Mile Creek and Mt. Robert. The differences in radiance levels indicated that a greater areal snow cover in Six Mile Creek Basin with the effect of lower radiance values from vegetation/snow regions. A comparison of the two visible bands (MSS 4 and 5) demonstrate this difference for the two basins

    Overview of the International Radar Symposium Best Papers, 2019, Ulm, Germany

    Get PDF

    Quantifying and improving laser range data when scanning industrial materials

    Get PDF
    This paper presents the procedure and results of a performance study of a miniature laser range scanner, along with a novel error correction calibration. Critically, the study investigates the accuracy and performance of the ranger sensor when scanning large industrial materials over a range of distances. Additionally, the study investigated the effects of small orientation angle changes of the scanner, in a similar manner to which it would experience when being deployed on a mobile robotic platform. A detailed process of error measurement and visualisation was undertaken on a number of parameters, not limited to traditional range data but also received intensity and amplifier gain. This work highlights that significant range distance errors are introduced when optically laser scanning common industrial materials, such as aluminum and stainless steel. The specular reflective nature of some materials results in large deviation in range data from the true value, with mean RMSE errors as high as 100.12 mm recorded. The correction algorithm was shown to reduce the RMSE error associated with range estimation on a planar aluminium surface from 6.48% to 1.39% of the true distance range
    corecore