4,143 research outputs found

    Utilising stream reasoning techniques to underpin an autonomous framework for cloud application platforms

    Get PDF
    As cloud application platforms (CAPs) are reaching the stage where the human effort required to maintain them at an operational level is unsupportable, one of the major challenges faced by the cloud providers is to develop appropriate mechanisms for run-time monitoring and adaptation, to prevent cloud application platforms from quickly dissolving into a non-reliable environment. In this context, the application of intelligent approaches to Autonomic Clouds may offer promising opportunities. In this paper we present an approach to providing cloud platforms with autonomic capabilities, utilising techniques from the Semantic Web and Stream Reasoning research fields. The main idea of this approach is to encode values, monitored within cloud application platforms, using Semantic Web languages, which then allows us to integrate semantically-enriched observation streams with static ontological knowledge and apply intelligent reasoning. Using such run-time reasoning capabilities, we have developed a conceptual architecture for an autonomous framework and describe a prototype solution we have constructed which implements this architecture. Our prototype is able to perform analysis and failure diagnosis, and suggest further adaptation actions. We report our experience in utilising the Stream Reasoning technique in this context as well as further challenges that arise out of our work

    EXCLAIM framework: a monitoring and analysis framework to support self-governance in Cloud Application Platforms

    Get PDF
    The Platform-as-a-Service segment of Cloud Computing has been steadily growing over the past several years, with more and more software developers opting for cloud platforms as convenient ecosystems for developing, deploying, testing and maintaining their software. Such cloud platforms also play an important role in delivering an easily-accessible Internet of Services. They provide rich support for software development, and, following the principles of Service-Oriented Computing, offer their subscribers a wide selection of pre-existing, reliable and reusable basic services, available through a common platform marketplace and ready to be seamlessly integrated into users' applications. Such cloud ecosystems are becoming increasingly dynamic and complex, and one of the major challenges faced by cloud providers is to develop appropriate scalable and extensible mechanisms for governance and control based on run-time monitoring and analysis of (extreme amounts of) raw heterogeneous data. In this thesis we address this important research question -- \textbf{how can we support self-governance in cloud platforms delivering the Internet of Services in the presence of large amounts of heterogeneous and rapidly changing data?} To address this research question and demonstrate our approach, we have created the Extensible Cloud Monitoring and Analysis (EXCLAIM) framework for service-based cloud platforms. The main idea underpinning our approach is to encode monitored heterogeneous data using Semantic Web languages, which then enables us to integrate these semantically enriched observation streams with static ontological knowledge and to apply intelligent reasoning. This has allowed us to create an extensible, modular, and declaratively defined architecture for performing run-time data monitoring and analysis with a view to detecting critical situations within cloud platforms. By addressing the main research question, our approach contributes to the domain of Cloud Computing, and in particular to the area of autonomic and self-managing capabilities of service-based cloud platforms. Our main contributions include the approach itself, which allows monitoring and analysing heterogeneous data in an extensible and scalable manner, the prototype of the EXCLAIM framework, and the Cloud Sensor Ontology. Our research also contributes to the state of the art in Software Engineering by demonstrating how existing techniques from several fields (i.e., Autonomic Computing, Service-Oriented Computing, Stream Processing, Semantic Sensor Web, and Big Data) can be combined in a novel way to create an extensible, scalable, modular, and declaratively defined monitoring and analysis solution

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Towards a framework for monitoring cloud application platforms as sensor networks

    Get PDF
    With the continued growth in software environments on cloud application platforms, self-management at the Platform-as-a-Service (PaaS) level has become a pressing concern, and the run-time monitoring, analysis and detection of critical situations are all fundamental requirements if we are to achieve autonomic behaviour in complex PaaS environments. In this paper we focus on cloud application platforms offering their customers a range of generic built-in re-usable services. By identifying key characteristics of these complex dynamic systems, we compare cloud application platforms to distributed sensor networks, and investigate the viability of exploiting these similarities with a case study. We treat cloud data storage services as “virtual” sensors constantly emitting monitoring data, such as numbers of connections and storage space availability, which are then analysed by the central component of a monitoring framework so as to detect and react to SLA violations. We discuss the potential benefits, as well as some shortcomings, of adopting this approach

    Ami-deu : un cadre sémantique pour des applications adaptables dans des environnements intelligents

    Get PDF
    Cette thĂšse vise Ă  Ă©tendre l’utilisation de l'Internet des objets (IdO) en facilitant le dĂ©veloppement d’applications par des personnes non experts en dĂ©veloppement logiciel. La thĂšse propose une nouvelle approche pour augmenter la sĂ©mantique des applications d’IdO et l’implication des experts du domaine dans le dĂ©veloppement d’applications sensibles au contexte. Notre approche permet de gĂ©rer le contexte changeant de l’environnement et de gĂ©nĂ©rer des applications qui s’exĂ©cutent dans plusieurs environnements intelligents pour fournir des actions requises dans divers contextes. Notre approche est mise en Ɠuvre dans un cadriciel (AmI-DEU) qui inclut les composants pour le dĂ©veloppement d’applications IdO. AmI-DEU intĂšgre les services d’environnement, favorise l’interaction de l’utilisateur et fournit les moyens de reprĂ©senter le domaine d’application, le profil de l’utilisateur et les intentions de l’utilisateur. Le cadriciel permet la dĂ©finition d’applications IoT avec une intention d’activitĂ© autodĂ©crite qui contient les connaissances requises pour rĂ©aliser l’activitĂ©. Ensuite, le cadriciel gĂ©nĂšre Intention as a Context (IaaC), qui comprend une intention d’activitĂ© autodĂ©crite avec des connaissances colligĂ©es Ă  Ă©valuer pour une meilleure adaptation dans des environnements intelligents. La sĂ©mantique de l’AmI-DEU est basĂ©e sur celle du ContextAA (Context-Aware Agents) – une plateforme pour fournir une connaissance du contexte dans plusieurs environnements. Le cadriciel effectue une compilation des connaissances par des rĂšgles et l'appariement sĂ©mantique pour produire des applications IdO autonomes capables de s’exĂ©cuter en ContextAA. AmI- DEU inclut Ă©galement un outil de dĂ©veloppement visuel pour le dĂ©veloppement et le dĂ©ploiement rapide d'applications sur ContextAA. L'interface graphique d’AmI-DEU adopte la mĂ©taphore du flux avec des aides visuelles pour simplifier le dĂ©veloppement d'applications en permettant des dĂ©finitions de rĂšgles Ă©tape par Ă©tape. Dans le cadre de l’expĂ©rimentation, AmI-DEU comprend un banc d’essai pour le dĂ©veloppement d’applications IdO. Les rĂ©sultats expĂ©rimentaux montrent une optimisation sĂ©mantique potentielle des ressources pour les applications IoT dynamiques dans les maisons intelligentes et les villes intelligentes. Notre approche favorise l'adoption de la technologie pour amĂ©liorer le bienĂȘtre et la qualitĂ© de vie des personnes. Cette thĂšse se termine par des orientations de recherche que le cadriciel AmI-DEU dĂ©voile pour rĂ©aliser des environnements intelligents omniprĂ©sents fournissant des adaptations appropriĂ©es pour soutenir les intentions des personnes.Abstract: This thesis aims at expanding the use of the Internet of Things (IoT) by facilitating the development of applications by people who are not experts in software development. The thesis proposes a new approach to augment IoT applications’ semantics and domain expert involvement in context-aware application development. Our approach enables us to manage the changing environment context and generate applications that run in multiple smart environments to provide required actions in diverse settings. Our approach is implemented in a framework (AmI-DEU) that includes the components for IoT application development. AmI- DEU integrates environment services, promotes end-user interaction, and provides the means to represent the application domain, end-user profile, and end-user intentions. The framework enables the definition of IoT applications with a self-described activity intention that contains the required knowledge to achieve the activity. Then, the framework generates Intention as a Context (IaaC), which includes a self-described activity intention with compiled knowledge to be assessed for augmented adaptations in smart environments. AmI-DEU framework semantics adopts ContextAA (Context-Aware Agents) – a platform to provide context-awareness in multiple environments. The framework performs a knowledge compilation by rules and semantic matching to produce autonomic IoT applications to run in ContextAA. AmI-DEU also includes a visual tool for quick application development and deployment to ContextAA. The AmI-DEU GUI adopts the flow metaphor with visual aids to simplify developing applications by allowing step-by-step rule definitions. As part of the experimentation, AmI-DEU includes a testbed for IoT application development. Experimental results show a potential semantic optimization for dynamic IoT applications in smart homes and smart cities. Our approach promotes technology adoption to improve people’s well-being and quality of life. This thesis concludes with research directions that the AmI-DEU framework uncovers to achieve pervasive smart environments providing suitable adaptations to support people’s intentions

    Development of a context-aware internet of things framework for remote monitoring services

    Get PDF
    Asset management is concerned with the management practices necessary to maximise the value delivered by physical engineering assets. Internet of Things (IoT)-generated data are increasingly considered as an asset and the data asset value needs to be maximised too. However, asset-generated data in practice are often collected in non-actionable form. Moreover, IoT data create challenges for data management and processing. One way to handle challenges is to introduce context information management, wherein data and service delivery are determined through resolving the context of a service or data request. This research was aimed at developing a context awareness framework and implementing it in an architecture integrating IoT with cloud computing for industrial monitoring services. The overall aim was achieved through a methodological investigation consisting of four phases: establish the research baseline, define experimentation materials and methods, framework design and development, as well as case study validation and expert judgment. The framework comprises three layers: the edge, context information management, and application. Moreover, a maintenance context ontology for the framework has developed focused on modelling failure analysis of mechanical components, so as to drive monitoring services adaptation. The developed context-awareness architecture is expressed business, usage, functional and implementation viewpoints to frame concerns of relevant stakeholders. The developed framework was validated through a case study and expert judgement that provided supporting evidence for its validity and applicability in industrial contexts. The outcomes of the work can be used in other industrially-relevant application scenarios to drive maintenance service adaptation. Context adaptive services can help manufacturing companies in better managing the value of their assets, while ensuring that they continue to function properly over their lifecycle.Manufacturin

    ALT-C 2010 - Conference Introduction and Abstracts

    Get PDF

    Deployment and Operation of Complex Software in Heterogeneous Execution Environments

    Get PDF
    This open access book provides an overview of the work developed within the SODALITE project, which aims at facilitating the deployment and operation of distributed software on top of heterogeneous infrastructures, including cloud, HPC and edge resources. The experts participating in the project describe how SODALITE works and how it can be exploited by end users. While multiple languages and tools are available in the literature to support DevOps teams in the automation of deployment and operation steps, still these activities require specific know-how and skills that cannot be found in average teams. The SODALITE framework tackles this problem by offering modelling and smart editing features to allow those we call Application Ops Experts to work without knowing low level details about the adopted, potentially heterogeneous, infrastructures. The framework offers also mechanisms to verify the quality of the defined models, generate the corresponding executable infrastructural code, automatically wrap application components within proper execution containers, orchestrate all activities concerned with deployment and operation of all system components, and support on-the-fly self-adaptation and refactoring
    • 

    corecore