241 research outputs found

    Invigorating Kenya’s absorptive capacity for health, safety and environmental technology in the upstream petroleum sector

    Get PDF
    A Thesis submitted in partial fulfillment of the requirements of the Degree of Master of Laws, at Strathmore UniversityHealth, safety and environmental concerns have accompanied oil and gas operations in fields across the world. The rise of digital technology and its successful application across various industries has presented hope for the identification, prevention and mitigation of traditional upstream concerns. While there is rapid development of technological innovations geared towards making oil fields safer, improving efficiency and increasing compliance with environmental regulations, their deployment within the African oil and gas sector is disappointingly low. Financial constraints, lack of awareness of the technology’s existence and apprehension at making the digital leap have already been blamed for the low uptake. This thesis traces the low deployment of HSE technology to legal and institutional gaps, arguing that the already identified factors do in fact flow from lacunas in these two fields. Employing qualitative review on the growing body of literature in relation to oilfield HSE technology, the thesis elevates technology absorption over technology transfer, demonstrating its superiority as a sustainable approach to technology acquisition. The active involvement of the recipient country in determining its upstream HSE risks, identifying technological innovations capable of addressing those needs and developing capacity to assimilate and customize imported technology are found to be particularly helpful to Kenya as both a developing nation and emergent oil producer. By evaluating the key drivers of technology absorption in terms of awareness, availability, affordability and accessibility, the study is able to identify the specific challenges constricting Kenya’s absorptive capacity to HSE technology. The legal and institutional reforms proposed in the study provide emphasis and practical means of invigorating Kenya’s capacity to absorb HSE technology in its upstream sector

    Biosensors for Diagnosis and Monitoring

    Get PDF
    Biosensor technologies have received a great amount of interest in recent decades, and this has especially been the case in recent years due to the health alert caused by the COVID-19 pandemic. The sensor platform market has grown in recent decades, and the COVID-19 outbreak has led to an increase in the demand for home diagnostics and point-of-care systems. With the evolution of biosensor technology towards portable platforms with a lower cost on-site analysis and a rapid selective and sensitive response, a larger market has opened up for this technology. The evolution of biosensor systems has the opportunity to change classic analysis towards real-time and in situ detection systems, with platforms such as point-of-care and wearables as well as implantable sensors to decentralize chemical and biological analysis, thus reducing industrial and medical costs. This book is dedicated to all the research related to biosensor technologies. Reviews, perspective articles, and research articles in different biosensing areas such as wearable sensors, point-of-care platforms, and pathogen detection for biomedical applications as well as environmental monitoring will introduce the reader to these relevant topics. This book is aimed at scientists and professionals working in the field of biosensors and also provides essential knowledge for students who want to enter the field

    Emerging Technologies

    Get PDF
    This monograph investigates a multitude of emerging technologies including 3D printing, 5G, blockchain, and many more to assess their potential for use to further humanity’s shared goal of sustainable development. Through case studies detailing how these technologies are already being used at companies worldwide, author Sinan Küfeoğlu explores how emerging technologies can be used to enhance progress toward each of the seventeen United Nations Sustainable Development Goals and to guarantee economic growth even in the face of challenges such as climate change. To assemble this book, the author explored the business models of 650 companies in order to demonstrate how innovations can be converted into value to support sustainable development. To ensure practical application, only technologies currently on the market and in use actual companies were investigated. This volume will be of great use to academics, policymakers, innovators at the forefront of green business, and anyone else who is interested in novel and innovative business models and how they could help to achieve the Sustainable Development Goals. This is an open access book

    Ancient and historical systems

    Get PDF

    Augmented Reality for Indoor Navigation and Task Guidance

    Get PDF
    Modern augmented reality systems are becoming increasingly popular in different industrial sectors as augmented reality based applications can improve performance and reduce workload during operations. The efficacy of such systems, however, has not been comprehensively investigated from human factors and performance standpoints. This research explores the design, development and evaluation of augmented reality based prototype applications for two discrete domain areas which include indoor navigation (Part II) and procedural task support in nuclear power plants (Part III). Augmented Reality-Based Indoor Navigation: In the study, we introduced an augmented reality-based indoor navigation application that utilizes pre-scanned environmental features and markerless tracking technology to assist people to navigate in indoor environments. The application can be implemented on electronic devices such as a smartphone or a head-mounted display, providing both visual and auditory instructions. In particular, we examined Google Glass as a wearable head-mounted device in comparison to hand-held navigation aids including a smartphone and a paper map. We conducted both a technical assessment study and a human factors study to comprehensively evaluate the system. The technical assessment established the feasibility and reliability of the system. The human factors study evaluated human-machine system performance measures including perceived accuracy, navigation time, subjective comfort, subjective workload, and route memory retention. The results showed that the wearable device was perceived to be more accurate, but other performance and workload results indicated that the wearable device was not significantly different from the hand-held smartphone. We also found that both digital navigation aids were better than the paper map in terms of shorter navigation time and lower workload, but digital navigation aids resulted in worse route retention. These results could provide empirical evidence supporting future designs of indoor navigation systems. Implications and future research were also discussed. Augmented Reality-Based Task Assistance in Nuclear Power Plants: This research illustrates the design, development and human factors evaluation of an augmented reality based procedural task guidance system, implemented on a hand-held tablet device (ipad), in order to support nuclear power plant operators with main control room operations. After conducting an extensive literature review, we detail the development stages of our new application prototype that employs marker based tracking to superimpose computer generated instructions in the live view of the operators control panel. We had hypothesized that the augmented reality-based procedures would perform better than the traditional methods currently used in nuclear power plants that include computer-based procedures and paper-based procedures. A research study was devised and carried out that compared the three methods of procedural instructions. The performance evaluation and human factors study revealed that the augmented reality based prototype solution reduced operator’s workload, increased operators situation awareness, made processes efficient and less prone to errors and reduced inquiry communication. The results also led us to conclude that augmented reality based procedural assistance poorly supports memory retention and skill learning amongst operators

    Sustainable Agriculture and Advances of Remote Sensing (Volume 1)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publishing the results, among others

    DEVELOPMENT OF FUNCTIONAL NANOCOMPOSITE MATERIALS TOWARDS BIODEGRADABLE SOFT ROBOTICS AND FLEXIBLE ELECTRONICS

    Get PDF
    World population is continuously growing, as well as the influence we have on the ecosystem\u2019s natural equilibrium. Moreover, such growth is not homogeneous and it results in an overall increase of older people. Humanity\u2019s activity, growth and aging leads to many challenging issues to address: among them, there are the spread of suddenly and/or chronic diseases, malnutrition, resource pressure and environmental pollution. Research in the novel field of biodegradable soft robotics and electronics can help dealing with these issues. In fact, to face the aging of the population, it is necessary an improvement in rehabilitation technologies, physiological and continuous monitoring, as well as personalized care and therapy. Also in the agricultural sector, an accurate and efficient direct measure of the plants health conditions would be of help especially in the less-developed countries. But since living beings, such as humans and plants, are constituted by soft tissues that continuously change their size and shapes, today\u2019s traditional technologies, based on rigid materials, may not be able to provide an efficient interaction necessary to satisfy these needs: the mechanical mismatch is too prohibitive. Instead, soft robotic systems and devices can be designed to combine active functionalities with soft mechanical properties that can allow them to efficiently and safely interact with soft living tissues. Soft implantable biomedical devices, smart rehabilitation devices and compliant sensors for plants are all applications that can be achieved with soft technologies. The development of sophisticated autonomous soft systems needs the integration on a unique soft body or platform of many functionalities (such as mechanical actuation, energy harvesting, storage and delivery, sensing capabilities). A great research interest is recently arising on this topic, but yet not so many groups are focusing their efforts in the use of natural-derived and biodegradable raw materials. In fact, resource pressure and environmental pollution are becoming more and more critical problems. It should be completely avoided the use of in exhaustion, pollutant, toxic and non-degradable resources, such as lithium, petroleum derivatives, halogenated compounds and organic solvents. So-obtained biodegradable soft systems and devices could then be manufactured in high number and deployed in the environment to fulfil their duties without the need to recover them, since they can safely degrade in the environment. The aim of the current Ph.D. project is the use of natural-derived and biodegradable polymers and substances as building blocks for the development of smart composite materials that could operate as functional elements in a soft robotic system or device. Soft mechanical properties and electronic/ionic conductive properties are here combined together within smart nanocomposite materials. The use of supersonic cluster beam deposition (SCBD) technique enabled the fabrication of cluster-assembled Au electrodes that can partially penetrate into the surface of soft materials, providing an efficient solution to the challenge of coupling conductive metallic layers and soft deformable polymeric substrates. In this work, cellulose derivatives and poly(3-hydroxybutyrate) bioplastic are used as building blocks for the development of both underwater and in-air soft electromechanical actuators that are characterized and tested. A cellulosic matrix is blended with natural-derived ionic liquids to design and manufacture completely biodegradable supercapacitors, extremely interesting energy storage devices. Lastly, ultrathin Au electrodes are here deposited on biodegradable cellulose acetate sheets, in order to develop transparent flexible electronics as well as bidirectional resistive-type strain sensors. The results obtained in this work can be regarded as a preliminary study towards the realization of full natural-derived and biodegradable soft robotic and electronic systems and devices

    Wright State University\u27s Celebration of Research, Scholarship, and Creative Activities Book of Abstracts from Friday, April 11, 2014

    Get PDF
    The student abstract booklet is a compilation of abstracts from students\u27 oral and poster presentations at Wright State University\u27s second annual Celebration of Research, Scholarship and Creative Activities on April 11, 2014.https://corescholar.libraries.wright.edu/urop_celebration/1007/thumbnail.jp
    • …
    corecore