18 research outputs found

    Comparative Data Analysis of Older Driver's vs Younger Driver's Gap Acceptance Behavior at signalized left turns - A driving Simulator Study

    Get PDF
    Drivers aged 65 and older are particularly prone to motor vehicle crashes, with approximately 20% of traffic fatalities occurring at intersections [11]. Intersections appear to be hazardous for drivers in this age group due to cognitive, perceptual, and psychomotor challenges. Older drivers find it particularly difficult to safely navigate left turns at signalized permissive intersections, having problems adequately detecting, perceiving, and accurately judging the safety of gaps. The increase in the number of elderly drivers has been paralleled by an increase in road-related accidents due to age-related fragility. By 2030, more than 21% of the adult population is projected to be over 65 years old [1]. However, previous studies have not adequately considered the combined effects of the randomized gap, queue length, traffic volume, pedestrians, and physiological factors on driving. The current study aims to address the gap in the literature by explicitly examining older and younger drivers’ gap acceptance behaviors during permissive left turns at four-way intersections. The main objective of this thesis is to study, identify and analyze the effect of Gap Acceptance Behavior on age, traffic volume, queue length, and physiological factors such as heart rate variability (HRV), electrodermal activity (EDA), and motion sickness among older and younger drivers. The data was collected from a driving simulator study comprising 40 participants aged between 20-30 for younger and 65 years for older. The collected data was used for comparative analysis, with the Gap Accepted by the drivers calculated from the video data. The gap is calculated as the distance between the left turning vehicle and the oncoming traffic. All recruited drivers were healthy. Each participant navigated twelve scenarios, six with lower traffic conditions and six with higher traffic conditions. Each lower and higher traffic scenario varied in queue length, with the number of cars in front of the ego vehicle varying from 0, 1, and 2. All varying queue lengths also had one with a pedestrian and another without. The physiological data collected through the Empatica4 wristband was also considered to study the gap acceptance behavior. Another parameter, motion sickness susceptibility score (MSSQ), was obtained from a questionnaire the participants completed after the experiment. Of these factors, queue length, traffic volume, and pedestrians play a significant role in studying gap acceptance. There is a significant difference in accepting and rejecting the gap between young and older drivers. Older drivers’ decision is affected more by factors, such as traffic volume, age, queue length, HRV, EDA, MSSQ score and the presence of pedestrians. This study showed that older drivers exhibited longer gap acceptance times than their younger counterparts while turning left across traffic at permissive intersections. Researchers may use the findings to better understand gap acceptance behaviors, while policymakers may utilize the results to design mobility guidelines

    A Simulation-Based Study on Driver Behavior when Negotiating Curves with Sight Limitations

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    License to Supervise:Influence of Driving Automation on Driver Licensing

    Get PDF
    To use highly automated vehicles while a driver remains responsible for safe driving, places new – yet demanding, requirements on the human operator. This is because the automation creates a gap between drivers’ responsibility and the human capabilities to take responsibility, especially for unexpected or time-critical transitions of control. This gap is not being addressed by current practises of driver licensing. Based on literature review, this research collects drivers’ requirements to enable safe transitions in control attuned to human capabilities. This knowledge is intended to help system developers and authorities to identify the requirements on human operators to (re)take responsibility for safe driving after automation

    Review and perspectives on driver digital twin and its enabling technologies for intelligent vehicles

    Get PDF
    Digital Twin (DT) is an emerging technology and has been introduced into intelligent driving and transportation systems to digitize and synergize connected automated vehicles. However, existing studies focus on the design of the automated vehicle, whereas the digitization of the human driver, who plays an important role in driving, is largely ignored. Furthermore, previous driver-related tasks are limited to specific scenarios and have limited applicability. Thus, a novel concept of a driver digital twin (DDT) is proposed in this study to bridge the gap between existing automated driving systems and fully digitized ones and aid in the development of a complete driving human cyber-physical system (H-CPS). This concept is essential for constructing a harmonious human-centric intelligent driving system that considers the proactivity and sensitivity of the human driver. The primary characteristics of the DDT include multimodal state fusion, personalized modeling, and time variance. Compared with the original DT, the proposed DDT emphasizes on internal personality and capability with respect to the external physiological-level state. This study systematically illustrates the DDT and outlines its key enabling aspects. The related technologies are comprehensively reviewed and discussed with a view to improving them by leveraging the DDT. In addition, the potential applications and unsettled challenges are considered. This study aims to provide fundamental theoretical support to researchers in determining the future scope of the DDT system

    Vehicle and Traffic Safety

    Get PDF
    The book is devoted to contemporary issues regarding the safety of motor vehicles and road traffic. It presents the achievements of scientists, specialists, and industry representatives in the following selected areas of road transport safety and automotive engineering: active and passive vehicle safety, vehicle dynamics and stability, testing of vehicles (and their assemblies), including electric cars as well as autonomous vehicles. Selected issues from the area of accident analysis and reconstruction are discussed. The impact on road safety of aspects such as traffic control systems, road infrastructure, and human factors is also considered

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    Advances in Automated Driving Systems

    Get PDF
    Electrification, automation of vehicle control, digitalization and new mobility are the mega-trends in automotive engineering, and they are strongly connected. While many demonstrations for highly automated vehicles have been made worldwide, many challenges remain in bringing automated vehicles to the market for private and commercial use. The main challenges are as follows: reliable machine perception; accepted standards for vehicle-type approval and homologation; verification and validation of the functional safety, especially at SAE level 3+ systems; legal and ethical implications; acceptance of vehicle automation by occupants and society; interaction between automated and human-controlled vehicles in mixed traffic; human–machine interaction and usability; manipulation, misuse and cyber-security; the system costs of hard- and software and development efforts. This Special Issue was prepared in the years 2021 and 2022 and includes 15 papers with original research related to recent advances in the aforementioned challenges. The topics of this Special Issue cover: Machine perception for SAE L3+ driving automation; Trajectory planning and decision-making in complex traffic situations; X-by-Wire system components; Verification and validation of SAE L3+ systems; Misuse, manipulation and cybersecurity; Human–machine interactions, driver monitoring and driver-intention recognition; Road infrastructure measures for the introduction of SAE L3+ systems; Solutions for interactions between human- and machine-controlled vehicles in mixed traffic

    Using wearable devices in naturalistic driving to analyze brain activity in roundabout maneuvers

    No full text
    Naturalistic Driving Studies (NDS) register data in real driving situations, trying to extract conclusions about how real drivers behave in specific situations, and for this purpose unobtrusive devices are used. In this paper, we present our work analyzing brain activity using Muse, a wearable electroencephalography (EEG) brain band, and an ad-hoc Android smartphone application. Our study is focuses in a specific maneuver: the roundabouts, and in the comparison between the brainwaves produced in that handling and in a straight section. For this purpose we made the same route in different moments of the day and under different weather conditions, and we isolate a specific stretch of six roundabouts and a straight one. Then we compare the beta and gamma brainwaves obtained in this two different maneuvers, which occurs in normal brain alert consciousness, attention or concentration states.SEGVAUTO TRIES: S2013/MIT-2713 grantTRA2016-78886-C3-2-R grantNo data 2018UE
    corecore