122,815 research outputs found

    An Experimental Nexos Laboratory Using Virtual Xinu

    Get PDF
    The Nexos Project is a joint effort between Marquette University, the University of Buffalo, and the University of Mississippi to build curriculum materials and a supporting experimental laboratory for hands-on projects in computer systems courses. The approach focuses on inexpensive, flexible, commodity embedded hardware, freely available development and debugging tools, and a fresh implementation of a classic operating system, Embedded Xinu, that is ideal for student exploration. This paper describes an extension to the Nexos laboratory that includes a new target platform composed of Qemu virtual machines. Virtual Xinu addresses two challenges that limit the effectiveness of Nexos. First, potential faculty adopters have clearly indicated that even with the current minimal monetary cost of installation, the hardware modifications, and time investment remain troublesome factors that scare off interested educators. Second, overcoming the inherent complications that arise due to the shared subnet that result in students\u27 projects interfering with each other in ways that are difficult to recreate, debug, and understand. Specifically, this paper discusses porting the Xinu operating systems to Qemu virtual hardware, developing the virtual networking platform, and results showing success using Virtual Xinu in the classroom during one semester of Operating Systems at the University of Mississippi

    XinuPi3: Teaching Multicore Concepts Using Embedded Xinu

    Get PDF
    As computer platforms become more advanced, the need to teach advanced computing concepts grows accordingly. This paper addresses one such need by presenting XinuPi3, a port of the lightweight instructional operating system Embedded Xinu to the Raspberry Pi 3. The Raspberry Pi 3 improves upon previous generations of inexpensive, credit card-sized computers by including a quad-core, ARM-based processor, opening the door for educators to demonstrate essential aspects of modern computing like inter-core communication and genuine concurrency. Embedded Xinu has proven to be an effective teaching tool for demonstrating low-level concepts on single-core platforms, and it is currently used to teach a range of systems courses at multiple universities. As of this writing, no other bare metal educational operating system supports multicore computing. XinuPi3 provides a suitable learning environment for beginners on genuinely concurrent hardware. This paper provides an overview of the key features of the XinuPi3 system, as well as the novel embedded system education experiences it makes possible

    Designing and Building immersive education spaces using Project Wonderland: from pedagogy through to practice

    Get PDF
    This paper presents work on the JISC funded SIMiLLE project to build a culturally sensitive virtual world to support language learning. This builds on the MiRTLE project (funded by Sun Microsystems), which created a mixed-reality space for teaching and learning. The aim of the SIMiLLE project is to investigate the technical feasibility and pedagogical value of using virtual environments to provide a realistic socio-cultural setting and content for language learning interaction. The paper starts by providing some background information on the Wonderland platform and the MiRTLE project, and then outlines the requirements for SIMiLLE, and how these requirements will be supported through the use of a virtual world based on Project Wonderland. We then present our plans for the evaluation of the system, with a particular focus on the importance of incorporating pedagogy into the design of these systems, and how we can support good practice with the ever-growing use of 3D virtual environments in formalised education

    The Experiences of Practice Educator Facilitators and Academics Supporting Adult Nursing Students Completing a Paid Placement During the COVID-19

    Get PDF
    The first phase of the COVID-19 global pandemic had a significant impact on nursing students studying in the United Kingdom, heralding changes to every aspect of their lives. Practice Education Facilitators (PEFs) and academics had to respond quickly and work in close collaboration with their wider system partners, Health Education England (HEE) and the Department of Health (DH). Changes in emergency measures implemented by the Nursing and Midwifery Council (NMC) provided nursing students in their final six months of study with the opportunity of completing a paid placement. The objectives of this study were to explore the experiences of academics and PEFs supporting the nursing students and to identify examples of good practice. A phenomenological approach was used seeking to understand the lived experience of PEFs and academics within one case study site. A purposeful sample of ten participants was chosen using semi-structured interviews and focus groups to collect the data via a virtual platform. The results highlighted three themes: communication, innovative learning opportunities and the importance of support mechanisms. PEFs and academics reported how they had increased their competence and confidence in using virtual platforms. They suggested that changes they implemented during the pandemic to support staff and students would become embedded in their future practice. This study provides insights into how PEFs and academics transformed their practice to support students and clinicians during the COVID-19 pandemic. Having robust virtual platforms for the development of continuing learning opportunities and enhanced communication approaches across health and academic environments was essential to this success.  

    The seamless integration of Web3D technologies with university curricula to engage the changing student cohort

    Get PDF
    The increasing tendency of many university students to study at least some courses at a distance limits their opportunities for the interactions fundamental to learning. Online learning can assist but relies heavily on text, which is limiting for some students. The popularity of computer games, especially among the younger students, and the emergence of networked games and game-like virtual worlds offers opportunities for enhanced interaction in educational applications. For virtual worlds to be widely adopted in higher education it is desirable to have approaches to design and development that are responsive to needs and limited in their resource requirements. Ideally it should be possible for academics without technical expertise to adapt virtual worlds to support their teaching needs. This project identified Web3D, a technology that is based on the X3D standards and which presents 3D virtual worlds within common web browsers, as an approach worth exploring for educational application. The broad goals of the project were to produce exemplars of Web3D for educational use, together with development tools and associated resources to support non-technical academic adopters, and to promote an Australian community of practice to support broader adoption of Web3D in education. During the first year of the project exemplar applications were developed and tested. The Web3D technology was found to be still in a relatively early stage of development in which the application of standards did not ensure reliable operation in different environments. Moreover, ab initio development of virtual worlds and associated tools proved to be more demanding of resources than anticipated and was judged unlikely in the near future to result in systems that non-technical academics could use with confidence. In the second year the emphasis moved to assisting academics to plan and implement teaching in existing virtual worlds that provided relatively easy to use tools for customizing an environment. A project officer worked with participating academics to support the teaching of significant elements of courses within Second LifeTM. This approach was more successful in producing examples of good practice that could be shared with and emulated by other academics. Trials were also conducted with ExitRealityTM, a new Australian technology that presents virtual worlds in a web browser. Critical factors in the success of the project included providing secure access to networked computers with the necessary capability; negotiating the complexity of working across education, design of virtual worlds, and technical requirements; and supporting participants with professional development in the technology and appropriate pedagogy for the new environments. Major challenges encountered included working with experimental technologies that are evolving rapidly and deploying new networked applications on secure university networks. The project has prepared the way for future expansion in the use of virtual worlds for teaching at USQ and has contributed to the emergence of a national network of tertiary educators interested in the educational applications of virtual worlds

    Visual communication in urban planning and urban design

    Get PDF
    This report documents the current status of visual communication in urban design and planning. Visual communication is examined through discussion of standalone and network media, specifically concentrating on visualisation on the World Wide Web(WWW).Firstly, we examine the use of Solid and Geometric Modelling for visualising urban planning and urban design. This report documents and compares examples of the use of Virtual Reality Modelling Language (VRML) and proprietary WWW based Virtual Reality modelling software. Examples include the modelling of Bath and Glasgow using both VRML 1.0 and 2.0. A review is carried out on the use of Virtual Worldsand their role in visualising urban form within multi-user environments. The use of Virtual Worlds is developed into a case study of the possibilities and limitations of Virtual Internet Design Arenas (ViDAs), an initiative undertaken at the Centre for Advanced Spatial Analysis, University College London. The use of Virtual Worlds and their development towards ViDAs is seen as one of the most important developments in visual communication for urban planning and urban design since the development plan.Secondly, photorealistic media in the process of communicating plans is examined.The process of creating photorealistic media is documented, examples of the Virtual Streetscape and Wired Whitehall Virtual Urban Interface System are provided. The conclusion is drawn that although the use of photo-realistic media on the WWW provides a way to visually communicate planning information, its use is limited. The merging of photorealistic media and solid geometric modelling is reviewed in the creation of Augmented Reality. Augmented Reality is seen to provide an important step forward in the ability to quickly and easily visualise urban planning and urban design information.Thirdly, the role of visual communication of planning data through GIS is examined interms of desktop, three dimensional and Internet based GIS systems. The evolution to Internet GIS is seen as a critical component in the development of virtual cities which will allow urban planners and urban designers to visualise and model the complexity of the built environment in networked virtual reality.Finally a viewpoint is put forward of the Virtual City, linking Internet GIS with photorealistic multi-user Virtual Worlds. At present there are constraints on how far virtual cities can be developed, but a view is provided on how these networked virtual worlds are developing to aid visual communication in urban planning and urban design
    • …
    corecore