8,004 research outputs found

    Using Geometric Constraints for Camera Calibration and Positioning and 3D Scene Modelling

    Get PDF
    International audienceThis work concerns the incorporation of geometric information in camera calibration and 3D modelling. Using geometric constraints enables stabler results and allows to perform tasks with fewer images. Our approach is interactive; the user defines geometric primitives and constraints between them. It is based on the observation that constraints such as coplanarity, parallelism or orthogonality, are easy to delineate by a user, and are well adapted to model the main structure of e.g. architectural scenes. We propose methods for camera calibration, camera position estimation and 3D scene reconstruction, all based on such geometric constraints. Various approaches exist for calibration and positioning from constraints, often based on vanishing points. We generalize this by considering composite primitives based on triplets of vanishing points. These are frequent in architectural scenes and considering composites of vanishing points makes computations more stable. They are defined by depicting in the images points belonging to parallelepipedic structures (e.g. appropriate points on two connected walls). Constraints on angles or length ratios on these structures can then be easily imposed. A method is proposed that "collects" all these data for all considered images, and computes simultaneously the calibration and pose of all cameras via matrix factorization. 3D scene reconstruction is then performed using many more geometric constraints, i.e. not only those encapsulated by parallelepipedic structures. A method is proposed that reconstructs the whole scene in iterations, solving a linear equation system at each iteration, and which includes an analysis of the parts of the scene that can/cannot be reconstructed at the current stage. The complete approach is validated by various experimental results, for cases where a single or several views are available

    Vanishing point detection for visual surveillance systems in railway platform environments

    Get PDF
    © 2018 Elsevier B.V. Visual surveillance is of paramount importance in public spaces and especially in train and metro platforms which are particularly susceptible to many types of crime from petty theft to terrorist activity. Image resolution of visual surveillance systems is limited by a trade-off between several requirements such as sensor and lens cost, transmission bandwidth and storage space. When image quality cannot be improved using high-resolution sensors, high-end lenses or IR illumination, the visual surveillance system may need to increase the resolving power of the images by software to provide accurate outputs such as, in our case, vanishing points (VPs). Despite having numerous applications in camera calibration, 3D reconstruction and threat detection, a general method for VP detection has remained elusive. Rather than attempting the infeasible task of VP detection in general scenes, this paper presents a novel method that is fine-tuned to work for railway station environments and is shown to outperform the state-of-the-art for that particular case. In this paper, we propose a three-stage approach to accurately detect the main lines and vanishing points in low-resolution images acquired by visual surveillance systems in indoor and outdoor railway platform environments. First, several frames are used to increase the resolving power through a multi-frame image enhancer. Second, an adaptive edge detection is performed and a novel line clustering algorithm is then applied to determine the parameters of the lines that converge at VPs; this is based on statistics of the detected lines and heuristics about the type of scene. Finally, vanishing points are computed via a voting system to optimize detection in an attempt to omit spurious lines. The proposed approach is very robust since it is not affected by ever-changing illumination and weather conditions of the scene, and it is immune to vibrations. Accurate and reliable vanishing point detection provides very valuable information, which can be used to aid camera calibration, automatic scene understanding, scene segmentation, semantic classification or augmented reality in platform environments

    Real-time robust estimation of vanishing points through nonlinear optimization

    Get PDF
    Vanishing points are elements of great interest in the computer vision field, since they are the main source of information about the geometry of the scene and the projection process associated to the camera. They have been studied and applied during decades for plane rectification, 3D reconstruction, and mainly auto-calibration tasks. Nevertheless, the literature lacks accurate online solutions for multiple vanishing point estimation. Most strategies focalize on the accuracy, using highly computational demanding iterative procedures. We propose a novel strategy for multiple vanishing point estimation that finds a trade-off between accuracy and efficiency, being able to operate in real time for video sequences. This strategy takes advantage of the temporal coherence of the images of the sequences to reduce the computational load of the processing algorithms while keeping a high level of accuracy due to an optimization process. The key element of the approach is a robust scheme based on the MLESAC algorithm, which is used in a similar way to the EM algorithm. This approach ensures robust and accurate estimations, since we use the MLESAC in combination with a novel error function, based on the angular error between the vanishing point and the image features. To increase the speed of the MLESAC algorithm, the selection of the minimal sample sets is substituted by a random sampling step that takes into account temporal information to provide better initializations. Besides, for the sake of flexibility, the proposed error function has been designed to work using as image features indiscriminately gradient-pixels or line segments. Hence, we increase the range of applications in which our approach can be used, according to the type of information that is available. The results show a real-time system that delivers real-time accurate estimations of multiple vanishing points for online processing, tested in moving camera video sequences of structured scenarios, both indoors and outdoors, such as rooms, corridors, facades, roads, etc

    Relating vanishing points to catadioptric camera calibration

    Get PDF
    This paper presents the analysis and derivation of the geometric relation between vanishing points and camera parameters of central catadioptric camera systems. These vanishing points correspond to the three mutually orthogonal directions of 3D real world coordinate system (i.e. X, Y and Z axes). Compared to vanishing points (VPs) in the perspective projection, the advantages of VPs under central catadioptric projection are that there are normally two vanishing points for each set of parallel lines, since lines are projected to conics in the catadioptric image plane. Also, their vanishing points are usually located inside the image frame. We show that knowledge of the VPs corresponding to XYZ axes from a single image can lead to simple derivation of both intrinsic and extrinsic parameters of the central catadioptric system. This derived novel theory is demonstrated and tested on both synthetic and real data with respect to noise sensitivity

    3D Reconstruction with Uncalibrated Cameras Using the Six-Line Conic Variety

    Full text link
    We present new algorithms for the recovery of the Euclidean structure from a projective calibration of a set of cameras with square pixels but otherwise arbitrarily varying intrinsic and extrinsic parameters. Our results, based on a novel geometric approach, include a closed-form solution for the case of three cameras and two known vanishing points and an efficient one-dimensional search algorithm for the case of four cameras and one known vanishing point. In addition, an algorithm for a reliable automatic detection of vanishing points on the images is presented. These techniques fit in a 3D reconstruction scheme oriented to urban scenes reconstruction. The satisfactory performance of the techniques is demonstrated with tests on synthetic and real data

    Traffic Danger Recognition With Surveillance Cameras Without Training Data

    Full text link
    We propose a traffic danger recognition model that works with arbitrary traffic surveillance cameras to identify and predict car crashes. There are too many cameras to monitor manually. Therefore, we developed a model to predict and identify car crashes from surveillance cameras based on a 3D reconstruction of the road plane and prediction of trajectories. For normal traffic, it supports real-time proactive safety checks of speeds and distances between vehicles to provide insights about possible high-risk areas. We achieve good prediction and recognition of car crashes without using any labeled training data of crashes. Experiments on the BrnoCompSpeed dataset show that our model can accurately monitor the road, with mean errors of 1.80% for distance measurement, 2.77 km/h for speed measurement, 0.24 m for car position prediction, and 2.53 km/h for speed prediction.Comment: To be published in proceedings of Advanced Video and Signal-based Surveillance (AVSS), 2018 15th IEEE International Conference on, pp. 378-383, IEE
    corecore