3,782 research outputs found

    Using transfer learning for classification of gait pathologies

    Get PDF
    Different diseases can affect an individual’s gait in different ways and, therefore, gait analysis can provide important insights into an individual’s health and well-being. Currently, most systems that perform gait analysis using 2D video are limited to simple binary classification of gait as being either normal or impaired. While some systems do perform gait classification across different pathologies, the reported results still have a considerable margin for improvement. This paper presents a novel system that performs classification of gait across different pathologies, with considerably improved results. The system computes the walking individual’s silhouettes, which are computed from a 2D video sequence, and combines them into a representation known as the gait energy image (GEI), which provides robustness against silhouette segmentation errors. In this work, instead of using a set of handcrafted gait features, feature extraction is done using the VGG-19 convolutional neural network. The network is fine-tuned to automatically extract the features that best represent gait pathologies, using transfer learning. The use of transfer learning improves the classification accuracy while avoiding the need of a very large training set, as the network is pre-trained for generic image description, which also contributes to a better generalization when tested across different datasets. The proposed system performs the final classification using linear discriminant analysis (LDA). Obtained results show that the proposed system outperforms the state-of-the-art, achieving a classification accuracy of 95% on a dataset containing gait sequences affected by diplegia, hemiplegia, neuropathy and Parkinson’s disease, along with normal gait sequences.info:eu-repo/semantics/acceptedVersio

    Remote Gait type classification system using markerless 2D video

    Get PDF
    Several pathologies can alter the way people walk, i.e., their gait. Gait analysis can be used to detect such alterations and, therefore, help diagnose certain pathologies or assess people’s health and recovery. Simple vision-based systems have a considerable potential in this area, as they allow the capture of gait in unconstrained environments, such as at home or in a clinic, while the required computations can be done remotely. State-of-the-art vision-based systems for gait analysis use deep learning strategies, thus requiring a large amount of data for training. However, to the best of our knowledge, the largest publicly available pathological gait dataset contains only 10 subjects, simulating 5 types of gait. This paper presents a new dataset, GAIT-IT, captured from 21 subjects simulating 5 types of gait, at 2 severity levels. The dataset is recorded in a professional studio, making the sequences free of background camouflage, variations in illumination and other visual artifacts. The dataset is used to train a novel automatic gait analysis system. Compared to the state-of-the-art, the proposed system achieves a drastic reduction in the number of trainable parameters, memory requirements and execution times, while the classification accuracy is on par with the state-of-the-art. Recognizing the importance of remote healthcare, the proposed automatic gait analysis system is integrated with a prototype web application. This prototype is presently hosted in a private network, and after further tests and development it will allow people to upload a video of them walking and execute a web service that classifies their gait. The web application has a user-friendly interface usable by healthcare professionals or by laypersons. The application also makes an association between the identified type of gait and potential gait pathologies that exhibit the identified characteristics.info:eu-repo/semantics/publishedVersio

    Extraction of biomedical indicators from gait videos

    Get PDF
    Gait has been an extensively investigated topic in recent years. Through the analysis of gait it is possible to detect pathologies, which makes this analysis very important to assess anomalies and, consequently, help in the diagnosis and rehabilitation of patients. There are some systems for analyzing gait, but they are usually either systems with subjective evaluations or systems used in specialized laboratories with complex equipment, which makes them very expensive and inaccessible. However, there has been a significant effort of making available simpler and more accurate systems for gait analysis and classification. This dissertation reviews recent gait analysis and classification systems, presents a new database with videos of 21 subjects, simulating 4 different pathologies as well as normal gait, and also presents a web application that allows the user to remotely access an automatic classification system and thus obtain the expected classification and heatmaps for the given input. The classification system is based on the use of gait representation images such as the Gait Energy Image (GEI) and the Skeleton Gait Energy Image (SEI), which are used as input to a VGG-19 Convolutional Neural Network (CNN) that is used to perform classification. This classification system is a vision-based system. To sum up, the developed web application aims to show the usefulness of the classification system, making it possible for anyone to access it.A marcha tem sido um tema muito investigado nos últimos anos. Através da análise da marcha é possível detetar patologias, o que torna esta análise muito importante para avaliar anómalias e consequentemente, ajudar no diagnóstico e na reabilitação dos pacientes. Existem alguns sistemas para analisar a marcha, mas habitualmente, ou estão sujeitos a uma interpretação subjetiva, ou são sistemas usados em laboratórios especializados com equipamento complexo, o que os torna muito dispendiosos e inacessíveis. No entanto, tem havido um esforço significativo com o objectivo de disponibilizar sistemas mais simples e mais precisos para análise e classificação da marcha. Esta dissertação revê os sistemas de análise e classificação da marcha desenvolvidos recentemente, apresenta uma nova base de dados com vídeos de 21 sujeitos, a simular 4 patologias diferentes bem como marcha normal, e apresenta também uma aplicação web que permite ao utilizador aceder remotamente a um sistema automático de classificação e assim, obter a classificação prevista e mapas de características respectivos de acordo com a entrada dada. O sistema de classificação baseia-se no uso de imagens de representação da marcha como a "Gait Energy Image" (GEI) e "Skeleton Gait Energy Image" (SEI), que são usadas como entrada numa rede neuronal convolucional VGG-19 que é usada para realizar a classificação. Este sistema de classificação corresponde a um sistema baseado na visão. Em suma, a aplicação web desenvolvida tem como finalidade mostrar a utilidade do sistema de classificação, tornando possível o acesso a qualquer pessoa

    A spatiotemporal deep learning approach for automatic pathological Gait classification

    Get PDF
    Human motion analysis provides useful information for the diagnosis and recovery assessment of people suffering from pathologies, such as those affecting the way of walking, i.e., gait. With recent developments in deep learning, state-of-the-art performance can now be achieved using a single 2D-RGB-camera-based gait analysis system, offering an objective assessment of gait-related pathologies. Such systems provide a valuable complement/alternative to the current standard practice of subjective assessment. Most 2D-RGB-camera-based gait analysis approaches rely on compact gait representations, such as the gait energy image, which summarize the characteristics of a walking sequence into one single image. However, such compact representations do not fully capture the temporal information and dependencies between successive gait movements. This limitation is addressed by proposing a spatiotemporal deep learning approach that uses a selection of key frames to represent a gait cycle. Convolutional and recurrent deep neural networks were combined, processing each gait cycle as a collection of silhouette key frames, allowing the system to learn temporal patterns among the spatial features extracted at individual time instants. Trained with gait sequences from the GAIT-IT dataset, the proposed system is able to improve gait pathology classification accuracy, outperforming state-of-the-art solutions and achieving improved generalization on cross-dataset tests.info:eu-repo/semantics/publishedVersio

    A functional electrical stimulation system for human walking inspired by reflexive control principles

    Get PDF
    This study presents an innovative multichannel functional electrical stimulation gait-assist system which employs a well-established purely reflexive control algorithm, previously tested in a series of bipedal walking robots. In these robots, ground contact information was used to activate motors in the legs, generating a gait cycle similar to that of humans. Rather than developing a sophisticated closed-loop functional electrical stimulation control strategy for stepping, we have instead utilised our simple reflexive model where muscle activation is induced through transfer functions which translate sensory signals, predominantly ground contact information, into motor actions. The functionality of the functional electrical stimulation system was tested by analysis of the gait function of seven healthy volunteers during functional electrical stimulation–assisted treadmill walking compared to unassisted walking. The results demonstrated that the system was successful in synchronising muscle activation throughout the gait cycle and was able to promote functional hip and ankle movements. Overall, the study demonstrates the potential of human-inspired robotic systems in the design of assistive devices for bipedal walking

    Exergames for motor rehabilitation in older adults: an umbrella review

    Get PDF
    Background: Exergames have been used as an innovative motor rehabilitation method with the main aim of improving motivation and exercise. As research interest in exergaming for rehabilitation is rapidly growing, a review of existing systematic reviews is important to synthesize the available evidence and provide recommendations. Objectives: In this article, we systematically synthesized the information from reviews that have examined the effects if exergames on different body movement parameters in older adults with and without specific pathologies. Method: Searches were conducted in Web of Science, Scopus, PsycARTICLES, PsycINFO, Psychology and Behavioural Sciences Collection, PubMed, SciELO, B-On and Google Scholar, articulating different terms and Boolean operators. Systematic reviews, meta-analysis and literature reviews published until May 2017 that investigated exergame interventions on physical outcomes, such as balance, gait, limb movements, muscle strength, in healthy and non-healthy older adults. Results: Based on prior reviews, exergaming, as a standalone intervention, has a positive effect on balance, gait, muscle strength, upper limb function, and dexterity. When compared to traditional physiotherapy, exergaming has at least similar effects on these outcomes. Many of the investigated studies indicated low methodological quality for the evaluation of the effects of exergames on different outcomes related to motor rehabilitation. Conclusions: Exergames could be used as a complement to traditional forms of motor rehabilitation, but future individual studies and reviews should follow more rigorous methodological standards in order to improve the quality of the evidence and provide guidelines for the use of exergames in motor rehabilitation.info:eu-repo/semantics/acceptedVersio

    Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients.

    Get PDF
    © 2015 Massé et al.Background: Stroke survivors often suffer from mobility deficits. Current clinical evaluation methods, including questionnaires and motor function tests, cannot provide an objective measure of the patients mobility in daily life. Physical activity performance in daily-life can be assessed using unobtrusive monitoring, for example with a single sensor module fixed on the trunk. Existing approaches based on inertial sensors have limited performance, particularly in detecting transitions between different activities and postures, due to the inherent inter-patient variability of kinematic patterns. To overcome these limitations, one possibility is to use additional information from a barometric pressure (BP) sensor. Methods: Our study aims at integrating BP and inertial sensor data into an activity classifier in order to improve the activity (sitting, standing, walking, lying) recognition and the corresponding body elevation (during climbing stairs or when taking an elevator). Taking into account the trunk elevation changes during postural transitions (sit-to-stand, stand-to-sit), we devised an event-driven activity classifier based on fuzzy-logic. Data were acquired from 12 stroke patients with impaired mobility, using a trunk-worn inertial and BP sensor. Events, including walking and lying periods and potential postural transitions, were first extracted. These events were then fed into a double-stage hierarchical Fuzzy Inference System (H-FIS). The first stage processed the events to infer activities and the second stage improved activity recognition by applying behavioral constraints. Finally, the body elevation was estimated using a pattern-enhancing algorithm applied on BP. The patients were videotaped for reference. The performance of the algorithm was estimated using the Correct Classification Rate (CCR) and F-score. The BP-based classification approach was benchmarked against a previously-published fuzzy-logic classifier (FIS-IMU) and a conventional epoch-based classifier (EPOCH). Results: The algorithm performance for posture/activity detection, in terms of CCR was 90.4 %, with 3.3 % and 5.6 % improvements against FIS-IMU and EPOCH, respectively. The proposed classifier essentially benefits from a better recognition of standing activity (70.3 % versus 61.5 % [FIS-IMU] and 42.5 % [EPOCH]) with 98.2 % CCR for body elevation estimation. Conclusion: The monitoring and recognition of daily activities in mobility-impaired stoke patients can be significantly improved using a trunk-fixed sensor that integrates BP, inertial sensors, and an event-based activity classifier

    Pathology detection mechanisms through continuous acquisition of biological signals

    Get PDF
    Mención Internacional en el título de doctorPattern identification is a widely known technology, which is used on a daily basis for both identification and authentication. Examples include biometric identification (fingerprint or facial), number plate recognition or voice recognition. However, when we move into the world of medical diagnostics this changes substantially. This field applies many of the recent innovations and technologies, but it is more difficult to see cases of pattern recognition applied to diagnostics. In addition, the cases where they do occur are always supervised by a specialist and performed in controlled environments. This behaviour is expected, as in this field, a false negative (failure to identify pathology when it does exists) can be critical and lead to serious consequences for the patient. This can be mitigated by configuring the algorithm to be safe against false negatives, however, this will raise the false positive rate, which may increase the workload of the specialist in the best case scenario or even result in a treatment being given to a patient who does not need it. This means that, in many cases, validation of the algorithm’s decision by a specialist is necessary, however, there may be cases where this validation is not so essential, or where this first identification can be treated as a guideline to help the specialist. With this objective in mind, this thesis focuses on the development of an algorithm for the identification of lower body pathologies. This identification is carried out by means of the way people walk (gait). People’s gait differs from one person to another, even making biometric identification possible through its use. however, when the people has a pathology, both physical or psychological, the gait is affected. This alteration generates a common pattern depending on the type of pathology. However, this thesis focuses exclusively on the identification of physical pathologies. Another important aspect in this thesis is that the different algorithms are created with the idea of portability in mind, avoiding the obligation of the user to carry out the walks with excessive restrictions (both in terms of clothing and location). First, different algorithms are developed using different configurations of smartphones for database acquisition. In particular, configurations using 1, 2 and 4 phones are used. The phones are placed on the legs using special holders so that they cannot move freely. Once all the walks have been captured, the first step is to filter the signals to remove possible noise. The signals are then processed to extract the different gait cycles (corresponding to two steps) that make up the walks. Once the feature extraction process is finished, part of the features are used to train different machine learning algorithms, which are then used to classify the remaining features. However, the evidence obtained through the experiments with the different configurations and algorithms indicates that it is not feasible to perform pathology identification using smartphones. This can be mainly attributed to three factors: the quality of the signals captured by the phones, the unstable sampling frequency and the lack of synchrony between the phones. Secondly, due to the poor results obtained using smartphones, the capture device is changed to a professional motion acquisition system. In addition, two types of algorithm are proposed, one based on neural networks and the other based on the algorithms used previously. Firstly, the acquisition of a new database is proposed. To facilitate the capture of the data, a procedure is established, which is proposed to be in an environment of freedom for the user. Once all the data are available, the preprocessing to be carried out is similar to that applied previously. The signals are filtered to remove noise and the different gait cycles that make up the walks are extracted. However, as we have information from several sensors and several locations for the capture device, instead of using a common cut-off frequency, we empirically set a cut-off frequency for each signal and position. Since we already have the data ready, a recurrent neural network is created based on the literature, so we can have a first approximation to the problem. Given the feasibility of the neural network, different experiments are carried out with the aim of improving the performance of the neural network. Finally, the other algorithm picks up the legacy of what was seen in the first part of the thesis. As before, this algorithm is based on the parameterisation of the gait cycles for its subsequent use and employs algorithms based on machine learning. Unlike the use of time signals, by parameterising the cycles, spurious data can be generated. To eliminate this data, the dataset undergoes a preparation phase (cleaning and scaling). Once a prepared dataset has been obtained, it is split in two, one part is used to train the algorithms, which are used to classify the remaining samples. The results of these experiments validate the feasibility of this algorithm for pathology detection. Next, different experiments are carried out with the aim of reducing the amount of information needed to identify a pathology, without compromising accuracy. As a result of these experiments, it can be concluded that it is feasible to detect pathologies using only 2 sensors placed on a leg.La identificación de patrones es una tecnología ampliamente conocida, la cual se emplea diariamente tanto para identificación como para autenticación. Algunos ejemplos de ello pueden ser la identificación biométrica (dactilar o facial), el reconocimiento de matrículas o el reconocimiento de voz. Sin embargo, cuando nos movemos al mundo del diagnóstico médico esto cambia sustancialmente. Este campo aplica muchas de las innovaciones y tecnologías recientes, pero es más difícil ver casos de reconocimiento de patrones aplicados al diagnóstico. Además, los casos donde se dan siempre están supervisados por un especialista y se realizan en ambientes controlados. Este comportamiento es algo esperado, ya que, en este campo, un falso negativo (no identificar la patología cuando esta existe) puede ser crítico y provocar consecuencias graves para el paciente. Esto se puede intentar paliar, configurando el algoritmo para que sea seguro frente a los falsos negativos, no obstante, esto aumentará la tasa de falsos positivos, lo cual puede aumentar el trabajo del especialista en el mejor de los casos o incluso puede provocar que se suministre un tratamiento a un paciente que no lo necesita. Esto hace que, en muchos casos sea necesaria la validación de la decisión del algoritmo por un especialista, sin embargo, pueden darse casos donde esta validación no sea tan esencial, o que se pueda tratar a esta primera identificación como una orientación de cara a ayudar al especialista. Con este objetivo en mente, esta tesis se centra en el desarrollo de un algoritmo para la identificación de patologías del tren inferior. Esta identificación se lleva a cabo mediante la forma de caminar de la gente (gait, en inglés). La forma de caminar de la gente difiere entre unas personas y otras, haciendo posible incluso la identificación biométrica mediante su uso. Sin embargo, esta también se ve afectada cuando se presenta una patología, tanto física como psíquica, que afecta a las personas. Esta alteración, genera un patrón común dependiendo del tipo de patología. No obstante, esta tesis se centra exclusivamente la identificación de patologías físicas. Otro aspecto importante en esta tesis es que los diferentes algoritmos se crean con la idea de la portabilidad en mente, evitando la obligación del usuario de realizar los paseos con excesivas restricciones (tanto de vestimenta como de localización). En primer lugar, se desarrollan diferentes algoritmos empleando diferentes configuraciones de teléfonos inteligentes para la adquisición de la base de datos. En concreto se usan configuraciones empleando 1, 2 y 4 teléfonos. Los teléfonos se colocan en las piernas empleando sujeciones especiales, de tal modo que no se puedan mover libremente. Una vez que se han capturado todos los paseos, el primer paso es filtrar las señales para eliminar el posible ruido que contengan. Seguidamente las señales se procesan para extraer los diferentes ciclos de la marcha (que corresponden a dos pasos) que componen los paseos. Una vez terminado el proceso de extracción de características, parte de estas se emplean para entrenar diferentes algoritmos de machine learning, los cuales luego son empleados para clasificar las restantes características. Sin embargo, las evidencias obtenidas a través de la realización de los experimentos con las diferentes configuración y algoritmos indican que no es viable realizar una identificación de patologías empleando teléfonos inteligentes. Principalmente esto se puede achacar a tres factores: la calidad de las señales capturadas por los teléfonos, la frecuencia de muestreo inestable y la falta de sincronía entre los teléfonos. Por otro lado, a raíz de los pobres resultados obtenidos empleado teléfonos inteligentes se cambia el dispositivo de captura a un sistema profesional de adquisición de movimiento. Además, se plantea crear dos tipos de algoritmo, uno basado en redes neuronales y otro basado en los algoritmos empleados anteriormente. Primeramente, se plantea la adquisición de una nueva base de datos. Para ellos se establece un procedimiento para facilitar la captura de los datos, los cuales se plantea han de ser en un entorno de libertad para el usuario. Una vez que se tienen todos los datos, el preprocesado que se realizar es similar al aplicado anteriormente. Las señales se filtran para eliminar el ruido y se extraen los diferentes ciclos de la marcha que componen los paseos. Sin embargo, como para el dispositivo de captura tenemos información de varios sensores y varias localizaciones, el lugar de emplear una frecuencia de corte común, empíricamente se establece una frecuencia de corte para cada señal y posición. Dado que ya tenemos los datos listos, se crea una red neuronal recurrente basada en la literatura, de este modo podemos tener una primera aproximación al problema. Vista la viabilidad de la red neuronal, se realizan diferentes experimentos con el objetivo de mejorar el rendimiento de esta. Finalmente, el otro algoritmo recoge el legado de lo visto en la primera parte de la tesis. Al igual que antes, este algoritmo se basa en la parametrización de los ciclos de la marcha, para su posterior utilización y emplea algoritmos basado en machine learning. A diferencia del uso de señales temporales, al parametrizar los ciclos, se pueden generar datos espurios. Para eliminar estos datos, el conjunto de datos se somete a una fase de preparación (limpieza y escalado). Una vez que se ha obtenido un conjunto de datos preparado, este se divide en dos, una parte se usa para entrenar los algoritmos, los cuales se emplean para clasificar las muestras restantes. Los resultados de estos experimentos validan la viabilidad de este algoritmo para la detección de patologías. A continuación, se realizan diferentes experimentos con el objetivo de reducir la cantidad de información necesaria para identificar una patología, sin perjudicar a la precisión. Resultado de estos experimentos, se puede concluir que es viable detectar patologías empleando únicamente 2 sensores colocados en una pierna.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: María del Carmen Sánchez Ávila.- Secretario: Mariano López García.- Vocal: Richard Matthew Gues

    Knock-in of Human BACE1 Cleaves Murine APP and Reiterates Alzheimer-like PhenoTypes

    Get PDF
    Footnotes We thank Roemex and the College for Life Science and Medicine at the University of Aberdeen for their generous support. The authors declare no competing financial interests.Peer reviewedPublisher PD

    Gait analysis under the lens of statistical physics

    Get PDF
    Human gait; Irreversibility; Multi-fractal analysisMarcha humana; Irreversibilidad; Análisis multifractalMarxa humana; Irreversibilitat; Anàlisi multifractalHuman gait is a fundamental activity, essential for the survival of the individual, and an emergent property of the interactions between complex physical and cognitive processes. Gait is altered in many situations, due both to external constraints, as e.g. paced walk, and to physical and neurological pathologies. Its study is therefore important as a way of improving the quality of life of patients, but also as a door to understanding the inner working of the human nervous system. In this review we explore how four statistical physics concepts have been used to characterise normal and pathological gait: entropy, maximum Lyapunov exponent, multi-fractal analysis and irreversibility. Beyond some basic definitions, we present the main results that have been obtained in this field, as well as a discussion of the main limitations researchers have dealt and will have to deal with. We finally conclude with some biomedical considerations and avenues for further development.This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 851255). M.Z. and F.O. acknowledges the Spanish State Research Agency through Grant MDM-2017–0711 funded by MCIN/AEI/10.13039/501100011033. Authors acknowledge support from the Escuela Universitaria de Fisioterapia de la ONCE
    corecore