773 research outputs found

    Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by aberrations in the genome. While several disea

    Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype

    Get PDF
    Motivation: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by aberrations in the genome. While several disease-causing variants have been identified, a major part of heritability remains unexplained. ALS is believed to have a complex genetic basis where non-additive combinations of variants constitute disease, which cannot be picked up using the linear models employed in classical genotype-phenotype association studies. Deep learning on the other hand is highly promising for identifying such complex relations. We therefore developed a deep-learning based approach for the classification of ALS patients versus healthy individuals from the Dutch cohort of the Project MinE dataset. Based on recent insight that regulatory regions harbor the majority of disease-associated variants, we employ a two-step approach: first promoter regions that are likely associated to ALS are identified, and second individuals are classified based on their genotype in the selected genomic regions. Both steps employ a deep convolutional neural network. The network architecture accounts for the structure of genome data by applying convolution only to parts of the data where this makes sense from a genomics perspective. Results: Our approach identifies potentially ALS-associated promoter regions, and generally outperforms other classification methods. Test results support the hypothesis that non-additive combinations of variants contribute to ALS. Architectures and protocols developed are tailored toward processing population-scale, whole-genome data. We consider this a relevant first step toward deep learning assisted genotype-phenotype association in whole genome-sized data

    Deep learning methods to predict amyotrophic lateral sclerosis disease progression

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a highly complex and heterogeneous neurodegenerative disease that affects motor neurons. Since life expectancy is relatively low, it is essential to promptly understand the course of the disease to better target the patient’s treatment. Predictive models for disease progression are thus of great interest. One of the most extensive and well-studied open-access data resources for ALS is the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) repository. In 2015, the DREAM-Phil Bowen ALS Prediction Prize4Life Challenge was held on PRO-ACT data, where competitors were asked to develop machine learning algorithms to predict disease progression measured through the slope of the ALSFRS score between 3 and 12 months. However, although it has already been successfully applied in several studies on ALS patients, to the best of our knowledge deep learning approaches still remain unexplored on the ALSFRS slope prediction in PRO-ACT cohort. Here, we investigate how deep learning models perform in predicting ALS progression using the PRO-ACT data. We developed three models based on different architectures that showed comparable or better performance with respect to the state-of-the-art models, thus representing a valid alternative to predict ALS disease progression

    Artificial intelligence for dementia drug discovery and trials optimization

    Get PDF
    Drug discovery and clinical trial design for dementia have historically been challenging. In part these challenges have arisen from patient heterogeneity, length of disease course, and the tractability of a target for the brain. Applying big data analytics and machine learning tools for drug discovery and utilizing them to inform successful clinical trial design has the potential to accelerate progress. Opportunities arise at multiple stages in the therapy pipeline and the growing availability of large medical data sets opens possibilities for big data analyses to answer key questions in clinical and therapeutic challenges. However, before this goal is reached, several challenges need to be overcome and only a multi-disciplinary approach can promote data-driven decision-making to its full potential. Herein we review the current state of machine learning applications to clinical trial design and drug discovery, while presenting opportunities and recommendations that can break down the barriers to implementation

    Artificial intelligence for dementia drug discovery and trials optimization

    Get PDF
    Drug discovery and clinical trial design for dementia have historically been challenging. In part these challenges have arisen from patient heterogeneity, length of disease course, and the tractability of a target for the brain. Applying big data analytics and machine learning tools for drug discovery and utilizing them to inform successful clinical trial design has the potential to accelerate progress. Opportunities arise at multiple stages in the therapy pipeline and the growing availability of large medical data sets opens possibilities for big data analyses to answer key questions in clinical and therapeutic challenges. However, before this goal is reached, several challenges need to be overcome and only a multi-disciplinary approach can promote data-driven decision-making to its full potential. Herein we review the current state of machine learning applications to clinical trial design and drug discovery, while presenting opportunities and recommendations that can break down the barriers to implementation

    Artificial intelligence for dementia drug discovery and trials optimization

    Get PDF
    Drug discovery and clinical trial design for dementia have historically been challenging. In part these challenges have arisen from patient heterogeneity, length of disease course, and the tractability of a target for the brain. Applying big data analytics and machine learning tools for drug discovery and utilizing them to inform successful clinical trial design has the potential to accelerate progress. Opportunities arise at multiple stages in the therapy pipeline and the growing availability of large medical data sets opens possibilities for big data analyses to answer key questions in clinical and therapeutic challenges. However, before this goal is reached, several challenges need to be overcome and only a multi‐disciplinary approach can promote data‐driven decision‐making to its full potential. Herein we review the current state of machine learning applications to clinical trial design and drug discovery, while presenting opportunities and recommendations that can break down the barriers to implementation

    Genetic architecture of the white matter connectome of the human brain

    Get PDF
    White matter tracts form the structural basis of large-scale functional networks in the human brain. We applied brain-wide tractography to diffusion images from 30,810 adult participants (UK Biobank), and found significant heritability for 90 regional connectivity measures and 851 tract-wise connectivity measures. Multivariate genome- wide association analyses identified 355 independently associated lead SNPs across the genome, of which 77% had not been previously associated with human brain metrics. Enrichment analyses implicated neurodevelopmental processes including neurogenesis, neural differentiation, neural migration, neural projection guidance, and axon development, as well as prenatal brain expression especially in stem cells, astrocytes, microglia and neurons. We used the multivariate association profiles of lead SNPs to identify 26 genomic loci implicated in structural connectivity between core regions of the left-hemisphere language network, and also identified 6 loci associated with hemispheric left-right asymmetry of structural connectivity. Polygenic scores for schizophrenia, bipolar disorder, autism spectrum disorder, attention-deficit hyperactivity disorder, left-handedness, Alzheimer’s disease, amyotrophic lateral sclerosis, and epilepsy showed significant multivariate associations with structural connectivity, each implicating distinct sets of brain regions with trait-relevant functional profiles. This large-scale mapping study revealed common genetic contributions to the structural connectome of the human brain in the general adult population, highlighting links with polygenic disposition to brain disorders and behavioural traits

    Understanding Neuromuscular Health and Disease: Advances in Genetics, Omics, and Molecular Function

    Get PDF
    This compilation focuses on recent advances in the molecular and cellular understandingof neuromuscular biology, and the treatment of neuromuscular disease.These advances are at the forefront of modern molecular methodologies, oftenintegrating across wet-lab cell and tissue models, dry-lab computational approaches,and clinical studies. The continuing development and application ofmultiomics methods offer particular challenges and opportunities in the field,not least in the potential for personalized medicine

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons. A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology
    corecore