882 research outputs found

    Fast Freenet: Improving Freenet Performance by Preferential Partition Routing and File Mesh Propagation

    Get PDF
    The Freenet Peer-to-Peer network is doing a good job in providing anonymity to the users. But the performance of the network in terms of download speed and request hit ratio is not that good. We propose two modifications to Freenet in order to improve the download speed and request hit ratio for all participants. To improve download speed we propose Preferential Partition Routing, where nodes are grouped according to bandwidth and slow nodes are discriminated when routing. For improvements in request hit ratio we propose File Mesh propagation where each node sends fuzzy information about what documents it posesses to its neigbors. To verify our proposals we simulate the Freenet network and the bandwidth restrictions present between nodes as well as using observed distributions for user actions to show how it affects the network. Our results show an improvement of the request hit ratio by over 30 times and an increase of the average download speed with six times, compared to regular Freenet routing

    The essence of P2P: A reference architecture for overlay networks

    Get PDF
    The success of the P2P idea has created a huge diversity of approaches, among which overlay networks, for example, Gnutella, Kazaa, Chord, Pastry, Tapestry, P-Grid, or DKS, have received specific attention from both developers and researchers. A wide variety of algorithms, data structures, and architectures have been proposed. The terminologies and abstractions used, however, have become quite inconsistent since the P2P paradigm has attracted people from many different communities, e.g., networking, databases, distributed systems, graph theory, complexity theory, biology, etc. In this paper we propose a reference model for overlay networks which is capable of modeling different approaches in this domain in a generic manner. It is intended to allow researchers and users to assess the properties of concrete systems, to establish a common vocabulary for scientific discussion, to facilitate the qualitative comparison of the systems, and to serve as the basis for defining a standardized API to make overlay networks interoperable

    NextBestOnce: Achieving Polylog Routing despite Non-greedy Embeddings

    Full text link
    Social Overlays suffer from high message delivery delays due to insufficient routing strategies. Limiting connections to device pairs that are owned by individuals with a mutual trust relationship in real life, they form topologies restricted to a subgraph of the social network of their users. While centralized, highly successful social networking services entail a complete privacy loss of their users, Social Overlays at higher performance represent an ideal private and censorship-resistant communication substrate for the same purpose. Routing in such restricted topologies is facilitated by embedding the social graph into a metric space. Decentralized routing algorithms have up to date mainly been analyzed under the assumption of a perfect lattice structure. However, currently deployed embedding algorithms for privacy-preserving Social Overlays cannot achieve a sufficiently accurate embedding and hence conventional routing algorithms fail. Developing Social Overlays with acceptable performance hence requires better models and enhanced algorithms, which guarantee convergence in the presence of local optima with regard to the distance to the target. We suggest a model for Social Overlays that includes inaccurate embeddings and arbitrary degree distributions. We further propose NextBestOnce, a routing algorithm that can achieve polylog routing length despite local optima. We provide analytical bounds on the performance of NextBestOnce assuming a scale-free degree distribution, and furthermore show that its performance can be improved by more than a constant factor when including Neighbor-of-Neighbor information in the routing decisions.Comment: 23 pages, 2 figure

    Local Search in Unstructured Networks

    Full text link
    We review a number of message-passing algorithms that can be used to search through power-law networks. Most of these algorithms are meant to be improvements for peer-to-peer file sharing systems, and some may also shed some light on how unstructured social networks with certain topologies might function relatively efficiently with local information. Like the networks that they are designed for, these algorithms are completely decentralized, and they exploit the power-law link distribution in the node degree. We demonstrate that some of these search algorithms can work well on real Gnutella networks, scale sub-linearly with the number of nodes, and may help reduce the network search traffic that tends to cripple such networks.Comment: v2 includes minor revisions: corrections to Fig. 8's caption and references. 23 pages, 10 figures, a review of local search strategies in unstructured networks, a contribution to `Handbook of Graphs and Networks: From the Genome to the Internet', eds. S. Bornholdt and H.G. Schuster (Wiley-VCH, Berlin, 2002), to be publishe
    • …
    corecore