11 research outputs found

    Abstraction, extension and structural auditing with the UMLS semantic network

    Get PDF
    The Unified Medical Language System (UMLS) is a two-level biomedical terminological knowledge base, consisting of the Metathesaurus (META) and the Semantic Network (SN), which is an upper-level ontology of broad categories called semantic types (STs). The two levels are related via assignments of one or more STs to each concept of the META. Although the SN provides a high-level abstraction for the META, it is not compact enough. Various metaschemas, which are compact higher-level abstraction networks of the SN, have been derived. A methodology is presented to evaluate and compare two given metaschemas, based on their structural properties. A consolidation algorithm is designed to yield a consolidated metaschema maintaining the best and avoiding the worst of the two given metaschemas. The methodology and consolidation algorithm were applied to the pair of heuristic metaschemas, the top-down metaschema and the bottom-up metaschema, which have been derived from two studies involving two groups of UMLS experts. The results show that the consolidated metaschema has better structural properties than either of the two input metaschemas. Better structural properties are expected to lead to better utilization of a metaschema in orientation and visualization of the SN. Repetitive consolidation, which leads to further structural improvements, is also shown. The META and SN were created in the absence of a comprehensive curated genomics terminology. The internal consistency of the SN\u27s categories which are relevant to genomics is evaluated and changes to improve its ability to express genomic knowledge are proposed. The completeness of the SN with respect to genomic concepts is evaluated and conesponding extensions to the SN to fill identified gaps are proposed. Due to the size and complexity of the UMLS, errors are inevitable. A group auditing methodolgy is presented, where the ST assignments for groups of similar concepts are audited. The extent of an ST, which is the group of all concepts assigned this ST, is divided into groups of concepts that have been assigned exactly the same set of STs. An algorithm finds subgroups of suspicious concepts. The auditor is presented with these subgroups, which purportedly exhibit the same semantics, and thus he will notice different concepts with wrong or missing ST assignments. Another methodology partitions these groups into smaller, singly rooted, hierarchically organized sets used to audit the hierarchical relationships. The algorithmic methodologies are compared with a comprehensive manual audit and show a very high error recall with a much higher precision than the manual exhaustive review

    The cohesive metaschema: a higher-level abstraction of the UMLS Semantic Network

    Get PDF
    AbstractThe Unified Medical Language System (UMLS) joins together a group of established medical terminologies in a unified knowledge representation framework. Two major resources of the UMLS are its Metathesaurus, containing a large number of concepts, and the Semantic Network (SN), containing semantic types and forming an abstraction of the Metathesaurus. However, the SN itself is large and complex and may still be difficult to view and comprehend. Our structural partitioning technique partitions the SN into structurally uniform sets of semantic types based on the distribution of the relationships within the SN. An enhancement of the structural partition results in cohesive, singly rooted sets of semantic types. Each such set is named after its root which represents the common nature of the group. These sets of semantic types are represented by higher-level components called meta-semantic types. A network, called a metaschema, which consists of the meta-semantic types connected by hierarchical and semantic relationships is obtained and provides an abstract view supporting orientation to the SN. The metaschema is utilized to audit the UMLS classifications. We present a set of graphical views of the SN based on the metaschema to help in user orientation to the SN. A study compares the cohesive metaschema to metaschemas derived semantically by UMLS experts

    Structural auditing methodologies for controlled terminologies

    Get PDF
    Several auditing methodologies for large controlled terminologies are developed. These are applied to the Unified Medical Language System XXXX and the National Cancer Institute Thesaurus (NCIT). Structural auditing methodologies are based on the structural aspects such as IS-A hierarchy relationships groups of concepts assigned to semantic types and groups of relationships defined for concepts. Structurally uniform groups of concepts tend to be semantically uniform. Structural auditing methodologies focus on concepts with unlikely or rare configuration. These concepts have a high likelihood for errors. One of the methodologies is based on comparing hierarchical relationships between the META and SN, two major knowledge sources of the UMLS. In general, a correspondence between them is expected since the SN hierarchical relationships should abstract the META hierarchical relationships. It may indicate an error when a mismatch occurs. The UMLS SN has 135 categories called semantic types. However, in spite of its medium size, the SN has limited use for comprehension purposes because it cannot be easily represented in a pictorial form, it has many (about 7,000) relationships. Therefore, a higher-level abstraction for the SN called a metaschema, is constructed. Its nodes are meta-semantic types, each representing a connected group of semantic types of the SN. One of the auditing methodologies is based on a kind of metaschema called a cohesive metaschema. The focus is placed on concepts of intersections of meta-semantic types. As is shown, such concepts have high likelihood for errors. Another auditing methodology is based on dividing the NCIT into areas according to the roles of its concepts. Moreover, each multi-rooted area is further divided into pareas that are singly rooted. Each p-area contains a group of structurally and semantically uniform concepts. These groups, as well as two derived abstraction networks called taxonomies, help in focusing on concepts with potential errors. With genomic research being at the forefront of bioscience, this auditing methodology is applied to the Gene hierarchy as well as the Biological Process hierarchy of the NCIT, since processes are very important for gene information. The results support the hypothesis that the occurrence of errors is related to the size of p-areas. Errors are more frequent for small p-areas

    Enriching and designing metaschemas for the UMLS semantic network

    Get PDF
    The disparate terminologies used by various biomedical applications or professionals make the communication between them more difficult. The Unified Medical Language System (UMLS) of the National Library of Medicine (NLM) is an attempt to integrate different medical terminologies into a unified representation framework to improve decision making and the quality of patient care as well as research in the health-care field. Metathesaurus (META) and Semantic Network (SN) are two main components of the UMLS system, where the SN provides a high-level abstract of the concepts in the META. This dissertation addresses three problems of the SN. First, the SN\u27s two-tree structure is restrictive because it does not allow a semantic type to be a specialization of several other semantic types. This restriction leads to the omission of some subsumption knowledge in the SN. Secondly, the SN is large and complex for comprehension purposes and it does not come with a pictorial representation for users. As a partial solution for this problem, several metaschemas were previously built as higher-level abstractions for the SN to help users\u27 orientation. Third, there is no efficient method to evaluate each metaschema. There is no technique to obtain a consolidated metaschema acceptable for a majority of the UMLS\u27s users. In this dissertation work the author attacked the described problems by using the following approaches. (1) The SN was expanded into the Enriched Semantic Network (ESN), a multiple subsumption structure with a directed acyclic graph (DAG) IS-A hierarchy, allowing a semantic type to have multiple parents. New viable IS-A links were added as warranted. Two methodologies were presented to identify and add new viable IS-A links. The ESN serves as an extended high-level abstract of the META. (2) The ESN\u27s semantic relationship distribution and concept configuration were studied. Rules were defined to derive the ESN\u27s semantic relationship distribution from the current SN\u27s semantic relationship distribution. A mapping function was defined to map the SN\u27s concept configuration to the ESN\u27s concept configuration, avoiding redundant classifications in the ESN\u27s concept configuration. (3) Several new metaschemas for the SN and the ESN were built and evaluated based on several different partitioning techniques. Each of these metaschema can serve as a higher-level abstraction of the SN (or the ESN)

    Structural analysis and auditing of SNOMED hierarchies using abstraction networks

    Get PDF
    SNOMED is one of the leading healthcare terminologies being used worldwide. Due to its sheer volume and continuing expansion, it is inevitable that errors will make their way into SNOMED. Thus, quality assurance is an important part of its maintenance cycle. A structural approach is presented in this dissertation, aiming at developing automated techniques that can aid auditors in the discovery of terminology errors more effectively and efficiently. Large SNOMED hierarchies are partitioned, based primarily on their relationships patterns, into concept groups of more manageable sizes. Three related abstraction networks with respect to a SNOMED hierarchy, namely the area taxonomy, partial-area taxonomy, and disjoint partial-area taxonomy, are derived programmatically from the partitions. Altogether they afford high-level abstraction views of the underlying hierarchy, each with different granularity. The area taxonomy gives a global structural view of a SNOMED hierarchy, while the partial-area taxonomy focuses more on the semantic uniformity and hierarchical proximity of concepts. The disjoint partial-area taxonomy is devised as an enhancement of the partial-area taxonomy and is based on the partition of the entire collection of so-called overlapping concepts into singly-rooted groups. The taxonomies are exploited as the basis for a number of systematic auditing regimens, with a theme that complex concepts are more error-prone and require special attention in auditing activities. In general, group-based auditing is promoted to achieve a more efficient review within semantically uniform groups. Certain concept groups in the different taxonomies are deemed “complex” according to various criteria and thus deserve focused auditing. Examples of these include strict inheritance regions in the partial-area taxonomy and overlapping partial-areas in the disjoint partial-area taxonomy. Multiple hypotheses are formulated to characterize the error distributions and ratios with respect to different concept groups presented by the taxonomies, and thus further establish their efficacy as vehicles for auditing. The methodologies are demonstrated using SNOMED’s Specimen hierarchy as the test bed. Auditing results are reported and analyzed to assess the hypotheses. With the use of the double bootstrap and Fisher’s exact test (two-tailed), the aforementioned hypotheses are confirmed. Auditing on various complex concept groups based on the taxonomies is shown to yield a statistically significant higher proportion of errors

    A chemical specialty semantic network for the Unified Medical Language System

    Get PDF
    Background Terms representing chemical concepts found the Unified Medical Language System (UMLS) are used to derive an expanded semantic network with mutually exclusive semantic types. The UMLS Semantic Network (SN) is composed of a collection of broad categories called semantic types (STs) that are assigned to concepts. Within the UMLS’s coverage of the chemical domain, we find a great deal of concepts being assigned more than one ST. This leads to the situation where the extent of a given ST may contain concepts elaborating variegated semantics. A methodology for expanding the chemical subhierarchy of the SN into a finer-grained categorization of mutually exclusive types with semantically uniform extents is presented. We call this network a Chemical Specialty Semantic Network (CSSN). A CSSN is derived automatically from the existing chemical STs and their assignments. The methodology incorporates a threshold value governing the minimum size of a type’s extent needed for inclusion in the CSSN. Thus, different CSSNs can be created by choosing different threshold values based on varying requirements. Results A complete CSSN is derived using a threshold value of 300 and having 68 STs. It is used effectively to provide high-level categorizations for a random sample of compounds from the “Chemical Entities of Biological Interest” (ChEBI) ontology. The effect on the size of the CSSN using various threshold parameter values between one and 500 is shown. Conclusions The methodology has several potential applications, including its use to derive a pre-coordinated guide for ST assignments to new UMLS chemical concepts, as a tool for auditing existing concepts, inter-terminology mapping, and to serve as an upper-level network for ChEBI

    Extensions of SNOMED taxonomy abstraction networks supporting auditing and complexity analysis

    Get PDF
    The Systematized Nomenclature of Medicine – Clinical Terms (SNOMED CT) has been widely used as a standard terminology in various biomedical domains. The enhancement of the quality of SNOMED contributes to the improvement of the medical systems that it supports. In previous work, the Structural Analysis of Biomedical Ontologies Center (SABOC) team has defined the partial-area taxonomy, a hierarchical abstraction network consisting of units called partial-areas. Each partial-area comprises a set of SNOMED concepts exhibiting a particular relationship structure and being distinguished by a unique root concept. In this dissertation, some extensions and applications of the taxonomy framework are considered. Some concepts appearing in multiple partial-areas have been designated as complex due to the fact that they constitute a tangled portion of a hierarchy and can be obstacles to users trying to gain an understanding of the hierarchy’s content. A methodology for partitioning the entire collection of these so-called overlapping complex concepts into singly-rooted groups was presented. A novel auditing methodology based on an enhanced abstraction network is described. In addition, the existing abstraction network relies heavily on the structure of the outgoing relationships of the concepts. But some of SNOMED hierarchies (or subhierarchies) serve only as targets of relationships, with few or no outgoing relationships of their own. This situation impedes the applicability of the abstraction network. To deal with this problem, a variation of the above abstraction network, called the converse abstraction network (CAN) is defined and derived automatically from a given SNOMED hierarchy. An auditing methodology based on the CAN is formulated. Furthermore, a preliminary study of the complementary use of the abstraction network in description logic (DL) for quality assurance purposes pertaining to SNOMED is presented. Two complexity measures, a structural complexity measure and a hierarchical complexity measure, based on the abstraction network are introduced to quantify the complexity of a SNOMED hierarchy. An extension of the two measures is also utilized specifically to track the complexity of the versions of the SNOMED hierarchies before and after a sequence of auditing processes

    Using structural and semantic methodologies to enhance biomedical terminologies

    Get PDF
    Biomedical terminologies and ontologies underlie various Health Information Systems (HISs), Electronic Health Record (EHR) Systems, Health Information Exchanges (HIEs) and health administrative systems. Moreover, the proliferation of interdisciplinary research efforts in the biomedical field is fueling the need to overcome terminological barriers when integrating knowledge from different fields into a unified research project. Therefore well-developed and well-maintained terminologies are in high demand. Most of the biomedical terminologies are large and complex, which makes it impossible for human experts to manually detect and correct all errors and inconsistencies. Automated and semi-automated Quality Assurance methodologies that focus on areas that are more likely to contain errors and inconsistencies are therefore important. In this dissertation, structural and semantic methodologies are used to enhance biomedical terminologies. The dissertation work is divided into three major parts. The first part consists of structural auditing techniques for the Semantic Network of the Unified Medical Language System (UMLS), which serves as a vocabulary knowledge base for biomedical research in various applications. Research techniques are presented on how to automatically identify and prevent erroneous semantic type assignments to concepts. The Web-based adviseEditor system is introduced to help UMLS editors to make correct multiple semantic type assignments to concepts. It is made available to the National Library of Medicine for future use in maintaining the UMLS. The second part of this dissertation is on how to enhance the conceptual content of SNOMED CT by methods of semantic harmonization. By 2015, SNOMED will become the standard terminology for EH R encoding of diagnoses and problem lists. In order to enrich the semantics and coverage of SNOMED CT for clinical and research applications, the problem of semantic harmonization between SNOMED CT and six reference terminologies is approached by 1) comparing the vertical density of SNOM ED CT with the reference terminologies to find potential concepts for export and import; and 2) categorizing the relationships between structurally congruent concepts from pairs of terminologies, with SNOMED CT being one terminology in the pair. Six kinds of configurations are observed, e.g., alternative classifications, and suggested synonyms. For each configuration, a corresponding solution is presented for enhancing one or both of the terminologies. The third part applies Quality Assurance techniques based on “Abstraction Networks” to biomedical ontologies in BioPortal. The National Center for Biomedical Ontology provides B ioPortal as a repository of over 350 biomedical ontologies covering a wide range of domains. It is extremely difficult to design a new Quality Assurance methodology for each ontology in BioPortal. Fortunately, groups of ontologies in BioPortal share common structural features. Thus, they can be grouped into families based on combinations of these features. A uniform Quality Assurance methodology design for each family will achieve improved efficiency, which is critical with the limited Quality Assurance resources available to most ontology curators. In this dissertation, a family-based framework covering 186 BioPortal ontologies and accompanying Quality Assurance methods based on abstraction networks are presented to tackle this problem
    corecore