48 research outputs found

    Second Annual Conference on Astronomical Data Analysis Software and Systems. Abstracts

    Get PDF
    Abstracts from the conference are presented. The topics covered include the following: next generation software systems and languages; databases, catalogs, and archives; user interfaces/visualization; real-time data acquisition/scheduling; and IRAF/STSDAS/PROS status reports

    A Feasible Lagrangian Approach with Application to the Generalized Assignment Problem

    Get PDF
    Lagrangian relaxation is a widely used decomposition approach to solve difficult optimization problems that exhibit special structure. It provides a lower bound on the optimal objective of a minimization problem. On the other hand, an upper bound and quality feasible solutions may be obtained by perturbing solutions of the subproblem. In this thesis, we enhance the Lagrangian approach by using information at the subproblem to push for feasibility to the original problem. We exploit the idea that if the solution for the subproblem is pushed towards feasibility to the original problem, it may lead to improved lower bounds as well as good feasible solutions. Our proposed strategy is to solve the subproblem repeatedly at each iteration of the Lagrangian procedure and strengthen it with valid inequalities. As cuts are added to the subproblem, it inevitably becomes harder to solve. We propose to solve it under a time limit and adjust the Lagrangian bound accordingly. Two variants of the approach are explored that we call a Modified Lagrangian approach and a Feasible Lagrangian approach. We use the Generalized Assignment Problem for testing. We develop two methodologies based on minimal covering inequalities. The first solves the subproblem repeatedly for a given number of iterations and generates minimal cover inequalities that are either discarded or passed on to subsequent Lagrangian iterations. The second starts with initial multipliers and repeatedly solves the subproblem until a feasible solution is attained. At that point, the regular Lagrangian approach is used to find a lower bound. We test on GAP instances from the literature and compare the lower bound to the Lagrangian bound and the feasible solution to the best known solution in the literature. The results demonstrate that the proposed feasible Lagrangian approach leads to improved lower bounds and good quality feasible solutions

    Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    Get PDF
    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments

    COBE's search for structure in the Big Bang

    Get PDF
    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle

    Goddard Visiting Scientist Program for the Space and Earth Sciences Directorate

    Get PDF
    A visiting scientist program was conducted in the space and earth sciences at GSFC. Research was performed in the following areas: astronomical observations; broadband x-ray spectral variability; ground-based spectroscopic and photometric studies; Seyfert galaxies; active galactic nuclei (AGN); massive stellar black holes; the differential microwave radiometer (DMR) onboard the cosmic background explorer (COBE); atmospheric models; and airborne and ground based radar observations. The specific research efforts are detailed by tasks

    Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1

    Get PDF
    This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center

    Heuristic algorithms for solving a class of multiobjective zero-one programming problems

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Cluster through the cosmic time

    Get PDF

    Best matching processes in distributed systems

    Get PDF
    The growing complexity and dynamic behavior of modern manufacturing and service industries along with competitive and globalized markets have gradually transformed traditional centralized systems into distributed networks of e- (electronic) Systems. Emerging examples include e-Factories, virtual enterprises, smart farms, automated warehouses, and intelligent transportation systems. These (and similar) distributed systems, regardless of context and application, have a property in common: They all involve certain types of interactions (collaborative, competitive, or both) among their distributed individuals—from clusters of passive sensors and machines to complex networks of computers, intelligent robots, humans, and enterprises. Having this common property, such systems may encounter common challenges in terms of suboptimal interactions and thus poor performance, caused by potential mismatch between individuals. For example, mismatched subassembly parts, vehicles—routes, suppliers—retailers, employees—departments, and products—automated guided vehicles—storage locations may lead to low-quality products, congested roads, unstable supply networks, conflicts, and low service level, respectively. This research refers to this problem as best matching, and investigates it as a major design principle of CCT, the Collaborative Control Theory. The original contribution of this research is to elaborate on the fundamentals of best matching in distributed and collaborative systems, by providing general frameworks for (1) Systematic analysis, inclusive taxonomy, analogical and structural comparison between different matching processes; (2) Specification and formulation of problems, and development of algorithms and protocols for best matching; (3) Validation of the models, algorithms, and protocols through extensive numerical experiments and case studies. The first goal is addressed by investigating matching problems in distributed production, manufacturing, supply, and service systems based on a recently developed reference model, the PRISM Taxonomy of Best Matching. Following the second goal, the identified problems are then formulated as mixed-integer programs. Due to the computational complexity of matching problems, various optimization algorithms are developed for solving different problem instances, including modified genetic algorithms, tabu search, and neighbourhood search heuristics. The dynamic and collaborative/competitive behaviors of matching processes in distributed settings are also formulated and examined through various collaboration, best matching, and task administration protocols. In line with the third goal, four case studies are conducted on various manufacturing, supply, and service systems to highlight the impact of best matching on their operational performance, including service level, utilization, stability, and cost-effectiveness, and validate the computational merits of the developed solution methodologies

    Bi-level optimisation and machine learning in the management of large service-oriented field workforces.

    Get PDF
    The tactical planning problem for members of the service industry with large multi-skilled workforces is an important process that is often underlooked. It sits between the operational plan - which involves the actual allocation of members of the workforce to tasks - and the strategic plan where long term visions are set. An accurate tactical plan can have great benefits to service organisations and this is something we demonstrate in this work. Sitting where it does, it is made up of a mix of forecast and actual data, which can make effectively solving the problem difficult. In members of the service industry with large multi-skilled workforces it can often become a very large problem very quickly, as the number of decisions scale quickly with the number of elements within the plan. In this study, we first update and define the tactical planning problem to fit the process currently undertaken manually in practice. We then identify properties within the problem that identify it as a new candidate for the application of bi-level optimisation techniques. The tactical plan is defined in the context of a pair of leader-follower linked sub-models, which we show to be solvable to produce automated solutions to the tactical plan. We further identify the need for the use of machine learning techniques to effectively find solutions in practical applications, where limited detail is available in the data due to its forecast nature. We develop neural network models to solve this issue and show that they provide more accurate results than the current planners. Finally, we utilise them as a surrogate for the follower in the bi-level framework to provide real world applicable solutions to the tactical planning problem. The models developed in this work have already begun to be deployed in practice and are providing significant impact. This is along with identifying a new application area for bi-level modelling techniques
    corecore