3,790 research outputs found

    Finding co-solvers on Twitter, with a little help from Linked Data

    Get PDF
    In this paper we propose a method for suggesting potential collaborators for solving innovation challenges online, based on their competence, similarity of interests and social proximity with the user. We rely on Linked Data to derive a measure of semantic relatedness that we use to enrich both user profiles and innovation problems with additional relevant topics, thereby improving the performance of co-solver recommendation. We evaluate this approach against state of the art methods for query enrichment based on the distribution of topics in user profiles, and demonstrate its usefulness in recommending collaborators that are both complementary in competence and compatible with the user. Our experiments are grounded using data from the social networking service Twitter.com

    Semantics-based selection of everyday concepts in visual lifelogging

    Get PDF
    Concept-based indexing, based on identifying various semantic concepts appearing in multimedia, is an attractive option for multimedia retrieval and much research tries to bridge the semantic gap between the media’s low-level features and high-level semantics. Research into concept-based multimedia retrieval has generally focused on detecting concepts from high quality media such as broadcast TV or movies, but it is not well addressed in other domains like lifelogging where the original data is captured with poorer quality. We argue that in noisy domains such as lifelogging, the management of data needs to include semantic reasoning in order to deduce a set of concepts to represent lifelog content for applications like searching, browsing or summarisation. Using semantic concepts to manage lifelog data relies on the fusion of automatically-detected concepts to provide a better understanding of the lifelog data. In this paper, we investigate the selection of semantic concepts for lifelogging which includes reasoning on semantic networks using a density-based approach. In a series of experiments we compare different semantic reasoning approaches and the experimental evaluations we report on lifelog data show the efficacy of our approach

    Using ontology engineering for understanding needs and allocating resources in web-based industrial virtual collaboration systems

    Get PDF
    In many interactions in cross-industrial and inter-industrial collaboration, analysis and understanding of relative specialist and non-specialist language is one of the most pressing challenges when trying to build multi-party, multi-disciplinary collaboration system. Hence, identifying the scope of the language used and then understanding the relationships between the language entities are key problems. In computer science, ontologies are used to provide a common vocabulary for a domain of interest together with descriptions of the meaning of terms and relationships between them, like in an encyclopedia. These, however, often lack the fuzziness required for human orientated systems. This paper uses an engineering sector business collaboration system (www.wmccm.co.uk) as a case study to illustrate the issues. The purpose of this paper is to introduce a novel ontology engineering methodology, which generates structurally enriched cross domain ontologies economically, quickly and reliably. A semantic relationship analysis of the Google Search Engine Index was devised and evaluated. Using Semantic analysis seems to generate a viable list of subject terms. A social network analysis of the semantically derived terms was conducted to generate a decision support network with rich relationships between terms. The derived ontology was quicker to generate, provided richer internal relationships and relied far less on expert contribution. More importantly, it improved the collaboration matching capability of WMCCM

    Dealing with uncertain entities in ontology alignment using rough sets

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Ontology alignment facilitates exchange of knowledge among heterogeneous data sources. Many approaches to ontology alignment use multiple similarity measures to map entities between ontologies. However, it remains a key challenge in dealing with uncertain entities for which the employed ontology alignment measures produce conflicting results on similarity of the mapped entities. This paper presents OARS, a rough-set based approach to ontology alignment which achieves a high degree of accuracy in situations where uncertainty arises because of the conflicting results generated by different similarity measures. OARS employs a combinational approach and considers both lexical and structural similarity measures. OARS is extensively evaluated with the benchmark ontologies of the ontology alignment evaluation initiative (OAEI) 2010, and performs best in the aspect of recall in comparison with a number of alignment systems while generating a comparable performance in precision
    • 

    corecore